Solidification of water under dynamic compression and its influence on the evolutions of shock waves
Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 466-474.

Voir la notice de l'article provenant de la source Math-Net.Ru

The transition of water into the ice VII phase was observed in experiments with its step-like shock compression. The transition occurs from a state “overcooled” by approximately 40 K. In the experiments, we observed relaxation of pressure as a result of the transition on a surface of LiF window as well as dispersion of the compression wave which propagates through the water with the state parameters needed for beginning of the transformation.
Keywords: shock waves, high pressures, water, solidification.
@article{CHEB_2017_18_3_a27,
     author = {A. S. Savinykh and G. V. Garkushin and G. I. Kanel' and S. V. Razorenov},
     title = {Solidification of water under dynamic compression and its influence on the evolutions of shock waves},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {466--474},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a27/}
}
TY  - JOUR
AU  - A. S. Savinykh
AU  - G. V. Garkushin
AU  - G. I. Kanel'
AU  - S. V. Razorenov
TI  - Solidification of water under dynamic compression and its influence on the evolutions of shock waves
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 466
EP  - 474
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a27/
LA  - ru
ID  - CHEB_2017_18_3_a27
ER  - 
%0 Journal Article
%A A. S. Savinykh
%A G. V. Garkushin
%A G. I. Kanel'
%A S. V. Razorenov
%T Solidification of water under dynamic compression and its influence on the evolutions of shock waves
%J Čebyševskij sbornik
%D 2017
%P 466-474
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a27/
%G ru
%F CHEB_2017_18_3_a27
A. S. Savinykh; G. V. Garkushin; G. I. Kanel'; S. V. Razorenov. Solidification of water under dynamic compression and its influence on the evolutions of shock waves. Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 466-474. http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a27/

[1] Morozov E. M., Levin V. A., Vershinin A. V., The Strength analysis. Fidesys in the hands of an engineer, URRS, M., 2015, 400 pp.

[2] Mineev V. N., Zaidel' R. M., “The Viscosity of Water and Mercury Under Shock Loading”, JETP, 27:6 (1968), 874–878

[3] Sakharov A. D., Zaidel' R. M., Mineev V. N., Ole'lnik A. G., “Experimental Investigation of the Stability of Shock Waves and the Mechanical Properties of Matter at High Pressures and Temperatures”, Dokl. Akad. Nauk SSSR, 159:5 (1964), 1019–1022

[4] Dremin A. N., Kuznetsov D. I., Shunin V. M., Yakushev V. V., “Viscosity and Electric-Conductivity of Glycerol at High Dynamic and Static Pressures”, Zhurnal Fizicheskoi Khimii, 54:1 (1980), 135–139

[5] Kanel' G. I., Savinykh A. S., Garkushin G. V., Razorenov S. V., “Evaluation of Glycerol Viscosity through the Width of a Weak Shock Wave”, High Temperature, 55:3 (2017), 365–369 | DOI | DOI

[6] G. H. Miller, T. J. Ahrens, “Shock-wave viscosity measurement”, Reviews of Modern Physics, 63:4 (1991), 919–947 | DOI

[7] Kormer S. B., Yushko K. B., Krishkevich G. V., “Phase Transformation of Water into Ice VII by Shock Compression”, JETP, 27:6 (1968), 879–881

[8] D.H. Dolan, Y.M. Gupta, “Time-dependent freezing of water under dynamic compression”, Chemical Physics Letters, 374 (2003), 608–612 | DOI

[9] D. H. Dolan, J. N. Johnson, Y. M. Gupta, “Nanosecond freezing of water under multiple shock wave compression: Continuum modeling and wave profile measurements”, J. Chem. Phys., 123 (2005), 064702 pp. | DOI

[10] D.H. Dolan, M.D. Knudson, C.A. Hall, C. Deeney, “A metastable limit for compressed liquid water”, Nature Physics, 3 (2007), 339–342 | DOI

[11] Stafford S. J. P., Chapman D. J., Bland S. N., Eakins D. E., “Observations on the nucleation of ice VII in compressed water”, AIP Conf. Proc., 1793, 2017, 130005 | DOI

[12] Kanel G. I., Razorenov S. V., Utkin A. V., Fortov V. E., Shock Wave Phenomena in Condensed Media, Yanus-K, M., 1996

[13] L.M. Barker, R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface”, J. Appl. Phys., 43 (1972), 4669 | DOI

[14] S. P. Marsh (ed.), LASL Shock Hugoniot Data, Univ. California Press, Berkeley, 1980