Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_3_a26, author = {S. G. Psakhie and A. Yu. Smolin and A. I. Dmitriev and E. V. Shilko and S. Yu. Korostelev}, title = {Movable cellular automaton method as a trend in discrete computational mechanics}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {444--465}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a26/} }
TY - JOUR AU - S. G. Psakhie AU - A. Yu. Smolin AU - A. I. Dmitriev AU - E. V. Shilko AU - S. Yu. Korostelev TI - Movable cellular automaton method as a trend in discrete computational mechanics JO - Čebyševskij sbornik PY - 2017 SP - 444 EP - 465 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a26/ LA - ru ID - CHEB_2017_18_3_a26 ER -
%0 Journal Article %A S. G. Psakhie %A A. Yu. Smolin %A A. I. Dmitriev %A E. V. Shilko %A S. Yu. Korostelev %T Movable cellular automaton method as a trend in discrete computational mechanics %J Čebyševskij sbornik %D 2017 %P 444-465 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a26/ %G ru %F CHEB_2017_18_3_a26
S. G. Psakhie; A. Yu. Smolin; A. I. Dmitriev; E. V. Shilko; S. Yu. Korostelev. Movable cellular automaton method as a trend in discrete computational mechanics. Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 444-465. http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a26/
[1] Darrigol O., “Between hydrodynamics and elasticity theory: the first five births of the Navier-Stokes equation”, Arch. Hist. Exact Sci., 56 (2002), 95–150 | DOI | MR | Zbl
[2] Levin V. A., Models and methods. Nucleation and development of defects, Nonlinear computational mechanics of strength, 1, ed. V. A. Levin, Physmatlit, M., 2015 (in Russian)
[3] Levin V. A., Vershinin A. V., Numerical methods. Implementation for high-performance computers, Nonlinear computational mechanics of strength, 3, ed. V. A. Levin, Physmatlit, M., 2015 (in Russian)
[4] Morozov E. M., Levin V. A., Vershinin A. V., Strength analysis. Fidesis for engineers, URRS, M., 2015 (in Russian)
[5] Cundall P. A., Strack O. D. L., “A discrete numerical model for granular assemblies”, Geotechnique, 29:1 (1979), 47–65 | DOI
[6] Cundall P. A., “A computer simulations of dense sphere assembles”, Micromechanics of granular materials, eds. M. Satake, J. T. Jenkins, Elsever Sci. Publ., Amsterdam, 1988, 113–123
[7] Herrmann H. J., “Simulating granular media on the computer”, 3rd Granada lectures in computational physics, eds. P.L. Garrido, J. Marro, Springer, Heidelberg, 1995, 67–114 | DOI | MR
[8] Hemmingsson J., Herrmann H. J., Roux S., “On stress networks in granular media”, J. Phys. I, 7 (1997), 291–302 | MR
[9] Walton O. R., “Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres”, Mechanics of Materials, 16 (1993), 239–247 | DOI
[10] Luding S., “Granular materials under vibration: Simulations of rotating spheres”, Phys. Rev. E, 52:4 (1995), 4442 | DOI
[11] Pöschel T., “Granular material flowing down an inclined chute: A molecular dynamic simulation”, J. Phys. II, 3 (1993), 27
[12] Greenspan D., “Particle modeling in science and technology”, Coll. Math. Societatis Janos Bolyai, 50, 1988, 51 | MR | Zbl
[13] Ostermayer G. P., “Friction models with discrete layers”, Z. Angew. Math. Mech., 80 (2000), 61–64
[14] Mustoe G. G. W., “A generalized formulation of the discrete element method”, Engineering computations, 9 (1992), 181–190 | DOI
[15] Bićanić N., “Discrete element methods”, Encyclopedia of computational mechanics, v. 1, Fundamentals, eds. E. Stein, R. Borst, T.J.R. Hughes, Wiley, Chichester, 2004, 311–337 | MR
[16] Hockney R. W., Eastwood J. W., Numerical Simulation by the Particle Method, McGraw-Hill International Book Company, 1981
[17] Potter D., Computational Physics, John Wiley Sons Ltd., London, 1973 | MR | Zbl
[18] Psakhie S. G., Horie Y., Korostelev S. Yu., Smolin A. Yu., Dmitriev A. I., Shilko E. V. Alekseev S. V., “Method of movable cellular automata as a tool for simulation within the framework of mesomechanics”, Russian Physics Journal, 38:11 (1995), 1157–1168 | DOI
[19] Psakhie S. G., Korostelev S. Yu., Smolin A. Yu., Dmitriev A. I., Shilko E. V., Moiseyenko D. D., Tatarintsev E. M., Alexeev S. V., “Movable cellular automata method as a tool for physical mesomechanics of materials”, Physical Mesomechanics, 1:1 (1998), 89–102
[20] Dmitriev A. I., Korostelev S. Yu., Ostermeyer G. P., Psakhie S. G., Smolin A. Yu., Shilko E. V., “Movable cellular automata method as a tool for simulation at the mesolevel”, Proc. of RAS. Mechanics of solids, 1999, no. 6, 87–94
[21] Psakhie S., Shilko E., Smolin A., Astafurov S., Ovcharenko V., “Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials”, Frattura ed Integrità Strutturale, 24 (2013), 26–59
[22] Shilko E. V., Psakhie S. G., Schmauder S., Popov V. L., Astafurov S. V., Smolin A. Yu., “Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure”, Computational Materials Science, 102 (2015), 267–285 | DOI
[23] Mikhailov A. S., Foundations of Synergetics I. Distributed Active Systems, Springer, Berlin, 1994, 112 pp. | MR | Zbl
[24] Smolin A. Y., Roman N. V., Dobrynin S. A., Psakhie S. G., “On rotation in the movable cellular automaton method”, Physical Mesomechanics, 12:2 (2009), 17–22
[25] Foiles S. M., Baskes M. I., Daw M. S., “Embeded-atom-method functions for the f.c.c. metals Cu, Ag, Au, Ni, Pd, Pt and their alloys”, Physical Review B, 33:12 (1986), 7983–7991 | DOI
[26] Psakhie S. G., Zolnikov K. P., Kryzhevich D. S., “Protodefect as a basis of multilevel nanoscale plasticity of crystal materials”, American Institute of Physics, 999 (2008), 20–31
[27] Korchuganov A. V., Zolnikov K. P., Kryzhevich D. S., Chernov V. M., Psakhie S. G., “MD simulation of plastic deformation nucleation in stressed crystallites under irradiation”, Physics of Atomic Nuclei, 79:7 (2016), 1193–1198 | DOI | Zbl
[28] Kragelskii I. V., Friction and Wear, Mashgiz, M., 1962
[29] Tworzydlo W. W., Cecot W., Oden J. T., Yew C. H., “Computational micro- and macroscopic models of contact and friction: formulation, approach and applications”, Wear, 220 (1999), 113–140 | DOI
[30] Rozman M. G., Urbakh M., Klafter J., “Stick-slip dynamics of interfacial friction”, Physica A, 249 (1998), 184–189 | DOI
[31] Raharijaona F., Roizard X., Stebut J., “Usage of 3D roughness parameters adapted to the experimental simulation of sheet-tool contact during a drawing operation”, Tribology International, 32 (1999), 59–67 | DOI