Phase field approach to interaction between phase transformations and plasticity at the nanoscale at large strains
Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 366-380.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, our recent phase field approach (PFA) to the interaction between phase transformations (PTs) and dislocations at the nanoscale is reviewed. It is developed at large strains as a nontrivial combination of our recent advanced PFAs to martensitic PTs and dislocation evolution. Finite element method (FEM) simulations are performed to solve the coupled phase-field and elasticity equations. The evolution of dislocations and high pressure phase in a nanograined material under pressure and shear is studied and utilized for interpretation of experimental results on plastic strain induce PTs under high pressure in rotational diamond anvil cell.
Keywords: phase field approach, phase transformations, dislocations, interaction, nanoscale.
@article{CHEB_2017_18_3_a21,
     author = {V. I. Levitas and M. Javanbakht},
     title = {Phase field approach to interaction between phase transformations and plasticity at  the nanoscale  at large strains},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {366--380},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a21/}
}
TY  - JOUR
AU  - V. I. Levitas
AU  - M. Javanbakht
TI  - Phase field approach to interaction between phase transformations and plasticity at  the nanoscale  at large strains
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 366
EP  - 380
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a21/
LA  - ru
ID  - CHEB_2017_18_3_a21
ER  - 
%0 Journal Article
%A V. I. Levitas
%A M. Javanbakht
%T Phase field approach to interaction between phase transformations and plasticity at  the nanoscale  at large strains
%J Čebyševskij sbornik
%D 2017
%P 366-380
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a21/
%G ru
%F CHEB_2017_18_3_a21
V. I. Levitas; M. Javanbakht. Phase field approach to interaction between phase transformations and plasticity at  the nanoscale  at large strains. Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 366-380. http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a21/

[1] Frenkel Y., “Theory of reversible and irreversible cracks in solids”, Zhurnal tekhnicheskoj fiziki, 22:11 (1952), 1857–1866; Fischer F. D., Reisner G., Werner E., Tanaka K., Cailletaud G., Antretter T., “A new view on transformation induced plasticity (TRIP)”, Int. J. Plast., 16 (2000), 723–748 | DOI | Zbl

[2] Levitas V. I., “Continuum mechanical fundamentals of mechanochemistry”, High Pressure Surface Science and Engineering, Section 3, eds. Y. Gogotsi, V. Domnich, Institute of Physics Publishing, 2004, 159–292

[3] Levitas V. I., “High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments”, Phys. Rev. B, 70 (2004), 184118 | DOI

[4] Olson G. B., Cohen M., “Dislocation theory of martensitic transformations”, Dislocations in solids, 7, ed. F. R. N. Nabarro, North-Holland, Amsterdam, 1998, 297–407

[5] Levitas V. I., “Structural changes without stable intermediate state in inelastic material. I; II”, Int. J. Plast., 16 (2000), 805–849 ; 851–892 | DOI

[6] Idesman A. V., Levitas V. I., Stein E., “Structural changes in elastoplastic materials: a unified finite element approach for phase transformation, twinning and fracture”, Int. J. Plast., 16 (2000), 893–949 | DOI | Zbl

[7] Levitas V. I., Javanbakht M., “Advanced Phase-Field Approach to Dislocation Evolution”, Physical Review B, 86 (2012), 140101(R) | DOI

[8] Levitas V. I., Javanbakht M., “Phase field approach to interaction of phase transformation and dislocation evolution”, Applied Physics Letters, 102 (2013), 251904 | DOI

[9] Levitas V. I., Javanbakht M., “Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms”, Nanoscale, 6 (2014), 162–166 | DOI

[10] Levitas V. I., Javanbakht M., “Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach”, Journal of the Mechanics and Physics of Solids, 82 (2015), 287–319 | DOI | MR

[11] Levitas V. I., Levin V. A., Zingerman K. M., Freiman E. I., “Displacive phase transitions at large strains: Phase-field theory and simulations”, Physical Review Letters, 103:2 (2009), 025702 | DOI

[12] Levin V. A., Levitas V. I., Lokhin V. V., Zingerman K. M., Sayakhova L. F., Freiman E. I., “Displacive phase transitions at large strains: Phase-field theory and simulations”, Doklady Phsyics, 55:10 (2010), 507–511 | DOI

[13] Levitas V. I., “Phase-field theory for martensitic phase transformations at large strains”, Int. J. Plast., 49 (2013), 85–118 | DOI

[14] Levitas V. I., “Phase field approach to martensitic phase transformations with large strains and interface stresses”, J. Mech. Phys. Solids, 70 (2014), 154–189 | DOI | MR | Zbl

[15] Levitas V. I., Preston D. L., Lee D.-W., “Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. Part III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory”, Physical Review B, 68 (2003), 134201, 24 pp. | DOI

[16] Levitas V. I., Javabakht M., “Thermodynamically consistent phase field approach to dislocation evolution at small and large strains”, Journal of the Mechanics and Physics of Solids, 82 (2015), 345–366 | DOI | MR

[17] Levin V. A., Levitas V. I., Zingerman K. M., Freiman E. I., “Phase-field simulation of stress-induced martensitic phase transformations at large strains”, International Journal of Solids and Structures, 50 (2013), 2914–2928 | DOI

[18] Javanbakht M., Levitas V. I., “Phase field approach to dislocation evolution at large strains: Computational aspects”, International Journal of Solids and Structures, 82 (2016), 95–110 | DOI | MR

[19] Javanbakht M., Levitas V. I., “Interaction between phase transformations and dislocations at the nanoscale. Part 2. Phase field simulation examples”, Journal of the Mechanics and Physics of Solids, 82 (2015), 164–185 | DOI | MR

[20] Javanbakht M., Levitas V. I., “Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear”, Physical Review B, 94 (2016), 214104, 21 pp. | DOI

[21] Levin V. A., “Theory of repeated superposition of large deformations. Elastic and viscoelastic bodies”, Int. J. Solids Struct., 35 (1998), 2585–2600 | DOI | Zbl

[22] Levin V. A., Mnogokratnoe nalozhenie bol'shih deformacij v uprugih i vjazkouprugih telah, Nauka, Fizmatlit, M., 1999, 223 pp.

[23] Levin V. A., Kalinin V. V., Zingerman K. M., Vershinin A. V., Razvitie defektov pri konechnyh deformacijah. Komp'juternoe i fizicheskoe modelirovanie, ed. V.A. Levin, Fizmatlit, M., 2007, 392 pp.

[24] V. D. Blank, E. I. Estrin, Phase Transitions in Solids under High Pressure, CRC Press, Boca Raton, 2014

[25] Ji C., Levitas V. I., Zhu H., Chaudhuri J., Marathe A., Ma Y., “Shear-Induced Phase Transition of Nanocrystalline Hexagonal Boron Nitride to Wurtzic Structure at Room Temperature and Lower Pressure”, Proceedings of the National Academy of Sciences of the United States of America, 109:33 (2012), 201203285 | DOI

[26] Levitas V. I., Ma Y., Selvi E., Wu J., Patten J. A., “High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure”, Physical Review B, 85:5 (2012), 054114 | DOI

[27] Levitas V. I., Ma Y. Z., Hashemi J., Levitas V. I., Ma Y. Z., Hashemi J., “Transformation-induced Plasticity and Cascading Structural Changes in Hexagonal Boron Nitride Under High Pressure and Shear”, Appl. Physics Letters, 86 (2005), 071912 | DOI

[28] Levitas V. I., Ma Y., Hashemi J., Holtz M., Guven N., “Strain-induced disorder, phase transformations and transformation induced plasticity in hexagonal boron nitride under compression and shear in a rotational diamond anvil cell: in-situ X-ray diffraction study and modeling”, The Journal of Chemical Physics, 125 (2006), 044507, 14 pp. | DOI

[29] Levitas V. I., Shvedov L. K., “Low Pressure Phase Transformation from Rhombohedral to Cubic BN: Experiment and Theory”, Physical Review B, 65:10 (2002), 104109 | DOI

[30] Levitas V. I., Roy A. M., “Multiphase phase field theory for temperature- and stress-induced phase transformations”, Physical Review B, 91:17 (2015), 174109 | DOI

[31] Levitas V. I., Roy A. M., Preston D. L., “Multiple twinning and variant-variant transformations in martensite: Phase-field approach”, Physical Review B, 88 (2013), 054113 | DOI | MR