Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_3_a17, author = {G. M. Kobel'kov and A. G. Sokolov}, title = {Implicit finite difference scheme for barotropic gas equations}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {306--317}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a17/} }
G. M. Kobel'kov; A. G. Sokolov. Implicit finite difference scheme for barotropic gas equations. Čebyševskij sbornik, Tome 18 (2017) no. 3, pp. 306-317. http://geodesic.mathdoc.fr/item/CHEB_2017_18_3_a17/
[1] Belotserkovskii O. M., Vasil'ev M. O., Vedernikov A. B., Dymnikov V. P., Zamyshlyaev B. V., Krysanov B. Yu., Kovshov N. V., Kunitsyn V. E., Molokov E. A., Repin A. Yu., Sidorenkova N. A., Stupitskii E. L., Kholodov Ya. A., Kholodov A. S., “Numerical simulation of some problems of interaction of Earth's lithosphere, hydrosphere and atmosphere”, Hystory fragments and achievements of the Design Automatization Institute of Russian Academy of Sciences. 1986–2011, Publishing House “Johnatan flight”, 2011, 14–71
[2] Popov I. V., Fryazinov I. V., Adaptive artificial viscosity method, Krasand, M., 2014
[3] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Boundary value problems of inhomogenious flows, Наука, Новосибирск, 1983 | MR
[4] Amosov A. A., Zlotnik A. A., “Second order accuracy finite difference schemes for 1D viscous gas flow”, Zh. Vychisl. Mat. Mat. Fiz., 27:7 (1987), 1032–1049 | Zbl
[5] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Mathematical problems of numerical solution of systems of hyperbolic equations, Nauka, M., 2001
[6] Lions P.-L., Mathematical Topics in Fluid Mechanics, v. 2, Oxford Lecture Series in Mathematics and its Applications, 10, Compressible Models, Clarendon Press, Oxford, 1998 | MR | Zbl
[7] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flow, Nauka, M., 1970