The invariants of generalized $f$-transformations for almost contact metric structures
Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 173-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider such generalizations of conformal transformations for contact metric manifolds as generalized conformal transformations, $f$-transformations, generalized $f$-transformations. Components of tensor fields for almost contact metric structure are given. These components are found in A-frame. Components for the tensor of affine deformation by Riemannian connection are calculated in this paper.We study six structure tensors of almost contact metric manifold.They are not invariant under generalized conformal transformations.We consider a particular case of the generalized conformal transformation, i.e. $f$-transformation, third, fifth structure tensors are invariant under this transformation. Conditions of invariance for other structure tensors are received. The invariance of six structure tensors under generalized $f$-transformations is studied. The second structure tensor is invariant under the generalized $f$-transformation. Vanishing of third and fifth structure tensors is invariant under this transformation.We got the conditions of invariance under these transformations for first structured tensor under generalized $f$-transformation. Bibliography: 15 titles.
Keywords: $f$-transformation, almost contact metric structure, structured tensors.
@article{CHEB_2017_18_2_a9,
     author = {A. V. Nikiforova},
     title = {The invariants of generalized $f$-transformations for almost contact metric structures},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {173--182},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a9/}
}
TY  - JOUR
AU  - A. V. Nikiforova
TI  - The invariants of generalized $f$-transformations for almost contact metric structures
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 173
EP  - 182
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a9/
LA  - ru
ID  - CHEB_2017_18_2_a9
ER  - 
%0 Journal Article
%A A. V. Nikiforova
%T The invariants of generalized $f$-transformations for almost contact metric structures
%J Čebyševskij sbornik
%D 2017
%P 173-182
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a9/
%G ru
%F CHEB_2017_18_2_a9
A. V. Nikiforova. The invariants of generalized $f$-transformations for almost contact metric structures. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 173-182. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a9/

[1] Smalley L. L., “Brans-Dicke — type models with nonmetricity”, Phys. Rev. D, 33 (1986), 3590–3593 | DOI | MR

[2] Frolov B. N., Poincaré-gauged calibration theory of gravity, MPGU, M., 2003, 160 pp.

[3] Gambini R., Herrera L., “Einstein Cartan theory in spin coefficient formalism”, J. Math. Phys., 21 (1980), 1449–1454 | DOI

[4] Nich H. T., “Spontaneously broken conformal gauge theory of gravitation”, Phys. Lett., A88 (1982), 388–390

[5] Obukhov Ju. N., “Conformal invariance and space-time torsion”, Phys. Lett., A90 (1982), 13–16 | DOI | MR

[6] Gray J., “Some global properties of contact structures”, Ann. Math., 69:2 (1959), 412–450 | DOI | MR

[7] Chinea D., Marrero J. C., “Conformal changes of almost contact metric structures”, Riv. Mat. Univ. Parma, 1 (1992), 19–31 | MR | Zbl

[8] Olszak Z., “Locally conformal almost cosymplectic manifolds”, Colloq. Math., 57:1 (1989), 73–87 | DOI | MR | Zbl

[9] Kirichenko V. F., Levkovec V. A., “On geometry of L-manifolds”, Mathematical Notes, 79:6 (2006), 854–869 | DOI

[10] Kirichenko V. F., Baklashova N. S., “The geometry of contact Lee forms and a contact analog of Ikuta's theorem”, Mathematical Notes, 82:3 (2007), 347–360 | DOI | Zbl

[11] Kirichenko V. F., Dondukova N. N., “Contactly geodesic transformations of almost-contact metric structures”, Mathematical Notes, 80:2 (2006), 209–219 | DOI | Zbl

[12] Rodina E. V., Linear extensions of almost contact metric manifolds, Diss. \ldots kand. fis.-mat. nauk, MPGU, M., 1997, 104 pp.

[13] Ignatochkina L. A., “Generalization for transformations of $T^1$-bundle which induced by conformal transformations of their base”, Sb. Math., 202:5 (2011), 665–682 | DOI | DOI | MR | Zbl

[14] Kirichenko V. F., Differential geometric structure on manifolds, v. 2, Pechatny Dom, Odessa, 2013, 458 pp.

[15] Kirichenko V. F., Uskorev I. V., “Invariants of conformal transformations of almost contact metric structures”, Mathematical Notes, 84:6 (2008), 783–794 | DOI | DOI | MR | Zbl