Induced transformations for almost Hermitian structure of linear extensions
Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 144-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

Induced transformation of almost Hermitian structure for linear extension of the manifold with almost contact metric structure was considered in this paper. We got formulas for induced transformation of almost Hermitian structure for linear extension of the smooth manifold with almost contact metric structure. There exist four equations for the Gray–Hervella's classification of the smooth manifolds with almost Hermitian structures. In this paper we studied invariance of these equations. One equation is invariant. The conditions of invariance for three other equations were got in this paper. These equations defined sixteen classes of the smooth manifolds with almost Hermitian structure. In this paper we studied invariance for these classes. One class is invariant. Six classes are invariant if and only if exterior differential of function of induced transformation is contained in the second fundamental distribution. Other classes are invariant if and only if the function of induced transformation is constant. Bibliography: 15 titles.
Keywords: almost Hermitian structure, almost contact metric structure, conformal change.
@article{CHEB_2017_18_2_a7,
     author = {L. A. Ignatochkina},
     title = {Induced transformations for almost {Hermitian} structure of linear extensions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {144--153},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a7/}
}
TY  - JOUR
AU  - L. A. Ignatochkina
TI  - Induced transformations for almost Hermitian structure of linear extensions
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 144
EP  - 153
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a7/
LA  - ru
ID  - CHEB_2017_18_2_a7
ER  - 
%0 Journal Article
%A L. A. Ignatochkina
%T Induced transformations for almost Hermitian structure of linear extensions
%J Čebyševskij sbornik
%D 2017
%P 144-153
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a7/
%G ru
%F CHEB_2017_18_2_a7
L. A. Ignatochkina. Induced transformations for almost Hermitian structure of linear extensions. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 144-153. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a7/

[1] Tashiro Y., “On contact structure of hypersurfaces in complex manifolds I”, Tohôku Math. J., 15 (1963), 62–78 | DOI | MR | Zbl

[2] Evtushik L. E., Lumiste Ju. G., Ostianu N. M., Shirokov A. P., “Differential geometric structure on manifolds”, Itogi nauki i techniki. Problemi geometrii, 9, 1979, 1–246

[3] Chinea D., Gonzalez C., “A Classification of Almost Contact Metric Manifolds”, Annali di Matematica pure ed applicata, CLVI (1990), 15–36 | DOI | MR | Zbl

[4] Rodina E. V., “On linear extensions of some almost contact manifolds”, Webs and quasigroups, Tver State Univ., 1995, 106 | MR | Zbl

[5] Rodina E. V., Linear extensions of almost contact metric manifolds, Diss. \ldots kand. fis.-mat. nauk, MPGU, M., 1997, 98 pp.

[6] Ignatochkina L. A., “Vaisman–Gray manifolds with $J$-invariant conformal curvature tensor”, Sb. Math., 194:2 (2003), 225–235 | DOI | DOI | MR | Zbl

[7] Kirichenko V. F., Uskorev I. V., “Invariants of conformal transformations of almost contact metric structures”, Mathematical Notes, 84:6 (2008), 783–794 | DOI | DOI | MR | Zbl

[8] Kirichenko V. F., Ezhova N. A., “Conformal invariants of Vaisman–Gray manifolds”, Russian Mathematical Surveys, 51:2 (1996), 331 | DOI | DOI | MR | Zbl

[9] Ignatochkina L. A., Abood H. M., “On Vaisman-Gray manifold with vanishing conharmonic curvature tensor”, Far East Journal of Mathematical Sciences (FJMS), 101:10 (2017), 2271–2284 | DOI

[10] Ignatochkina L. A., Morozov P. B., “The transformations induced by conformal transformations on $T^1$-bundle”, Journal of Basrah Researchers ((Sciences)), 37:4C (2011), 8–15 | MR

[11] Ignatochkina L. A., “Generalization for transformations of $T^1$-bundle which induced by conformal transformations of their base”, Sb. Math., 202:5 (2011), 665–682 | DOI | DOI | MR | Zbl

[12] Ignatochkina L. A., “Local Structure of Vaisman–Gray Manifolds”, Journal of Mathematical Sciences, 217:5 (2016), 595–606 | DOI | MR | Zbl

[13] Kirichenko V. F., Differential geometric structure on manifolds, v. 2, Pechatny Dom, Odessa, 2013, 458 pp.

[14] Gray A., Hervella L. M., “The Sixteen Classes of Almost Hermitian Manifolds and Their Linear Invariants”, Annali di Matematica pura ed applicata, CXXIII:IV (1980), 35–58 | DOI | MR | Zbl

[15] Banaru M., “A new characterization of the Gray-Hervella classes of almost Hermitian manifold”, 8$^{\mathrm{th}}$ International conference on differential geometry and its applications (Opava-Czech Republic, 27–31 August 2001), 4