On fractional linear transformations of forms A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina
Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 54-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work builds on the algebraic theory of polynomials Tue. The theory is based on the study of submodules of $\mathbb Z[t]$-module $\mathbb Z[t]^2$. Considers submodules that are defined by one defining relation and one defining relation $k$-th order. More complex submodule is the submodule given by one polynomial relation. Sub par Tue $j$-th order are directly connected with polynomials Tue $j$-th order. Using the algebraic theory of pairs of submodules of Tue $j$-th order managed to obtain a new proof of the theorem of M. N. Dobrowolski (senior) that for each $j$ there are two fundamental polynomial Tue $j$-th order, which are expressed through others. Basic polynomials are determined with an accuracy of unimodular polynomial matrices over the ring of integer polynomials. In the work introduced linear-fractional conversion of TDP-forms. It is shown that the transition from TDP-forms associated with an algebraic number $\alpha$ to TDP-the form associated with the residual fraction to algebraic number $\alpha$, TDP-form is converted under the law, similar to the transformation of minimal polynomials and the numerators and denominators of the respective pairs of Tue is converted using the linear-fractional transformations of the second kind. Bibliography: 37 titles.
Keywords: the minimum polynomial of the given algebraic irrationality, residual fractions, continued fractions, TDP-shape, the modules Tue, couple Tue, linear-fractional transformation of the second kind.
@article{CHEB_2017_18_2_a4,
     author = {N. M. Dobrovol'skii and I. N. Balaba and I. Yu. Rebrova and N. N. Dobrovol'skii and E. A. Matveeva},
     title = {On  fractional linear transformations of forms  {A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {54--97},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a4/}
}
TY  - JOUR
AU  - N. M. Dobrovol'skii
AU  - I. N. Balaba
AU  - I. Yu. Rebrova
AU  - N. N. Dobrovol'skii
AU  - E. A. Matveeva
TI  - On  fractional linear transformations of forms  A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 54
EP  - 97
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a4/
LA  - ru
ID  - CHEB_2017_18_2_a4
ER  - 
%0 Journal Article
%A N. M. Dobrovol'skii
%A I. N. Balaba
%A I. Yu. Rebrova
%A N. N. Dobrovol'skii
%A E. A. Matveeva
%T On  fractional linear transformations of forms  A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina
%J Čebyševskij sbornik
%D 2017
%P 54-97
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a4/
%G ru
%F CHEB_2017_18_2_a4
N. M. Dobrovol'skii; I. N. Balaba; I. Yu. Rebrova; N. N. Dobrovol'skii; E. A. Matveeva. On  fractional linear transformations of forms  A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 54-97. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a4/

[1] Van der Waerden B. L., Algebra, Iz-in “Science”, M., 1976

[2] Weyl G., Algebraic number theory, GI IL, M., 1947

[3] Gauss K. F., Proceedings on the theory of numbers, Translation of B. B. Demyanov, general edition I. M. Vinogradova, comments B. N. Delone, Publishing House of the USSR Academy of Sciences, M., 1959, 978 pp.

[4] Dobrovol'skii M. N., “On the decomposition of irrationalities of the third degree into continuous fractions”, Chebyshevsky Sb., XI:4(36) (2010), 4–24

[5] Dobrovol'skii N. M., Dobrovolsky N. N., “On the forms of A. Thue–M. N. Dobrovolsky–V. D. Podsypinina”, Chebyshevsky Sb., XI:4(36) (2010), 70–109

[6] N. M. Dobrovol'skii, N. N. Dobrovol'skii, “About minimal polynomial residual fractions for algebraic irrationalities”, Chebyshevskii Sb., 16:3 (2015), 147–182

[7] N. M. Dobrovol'skii, N. N. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, N. S. Polyakova, “Fractional-linear transformations of polynomials and linear transformations of forms”, Proceedings of the XIII International Conference Algebra, number theory and discrete geometry: modern problems and applications, Supplementary volume, Publishing house Tul. State. Ped. The university of L. N. Tolstoy, Tula, 2015, 134–149

[8] N. M. Dobrovolsky, N. N. Dobrovolsky, D. K. Sobolev, V. N. Soboleva, “Classification of purely real algebraic irrationalities”, Chebyshevsky Sb., 18:2 (2017), 98–128

[9] N. M. Dobrovol'skii, D. K. Sobolev, V. N. Soboleva, “On matrix decomposition of one reduced cubic irrational”, Chebyshevsky Sb., 14:1 (2013), 34–55

[10] N. M. Dobrovol'skii, E. I. Yushina, “On reduced algebraic irrationalities”, Algebra and Applications, Proceedings of the International Conference on Algebra L. A. Kaluzhnina (Nalchik, September 6–11, 2014), Iz-in Kabardino-Balkarian State University, Nalchik, 44–46

[11] N. M. Dobrovol'skii, N. N. Dobrovol'skii, E. I. Yushina, “On the matrix form of the Galois theorem on purely periodic continued fractions”, Chebyshevskii Sb., 13:3 (2012), 47–52 | Zbl

[12] Davenport G., Higher arithmetic. Introduction to number theory, Iz-in From the “Science”, 1965

[13] A. I. Kostrikin, Introduction to Algebra, Textbook for high schools, v. III, Basic structures, 2nd ed., Correct., Physical and mathematical literature, M., 2001, 272 pp.

[14] Dirichlet P. G. L., Lectures on number theory, ONTI NKTP of the USSR, M.–L., 1936

[15] E. A. Morozova, “Thue polynomials for quadratic irrationalities”, Algebra, number theory and discrete geometry: Contemporary problems and applications, Proceedings of the XIIIth International Conference. Conf., Dedicated to the 85th anniversary of the birth of Professor Sergey Sergeevich Ryshkov, Izd-vo Tul. State. Ped. Un-ta L. N. Tolstoy, Tula, 2015, 354–356

[16] E. A. Morozova, “Thue polynomials for quadratic irrationalities”, Algebra, number theory and discrete geometry: Contemporary problems and applications, Proceedings of the XIIIth International Conference. Conf., Ext. Tom, Publishing House Tul. State. Ped. Un-ta them. L. N. Tolstoy, Tula, 2015, 161–168

[17] E. A. Morozova, “Thue polynomials for quadratic irrationalities”, Mathematics and Computer Science: Proceedings of the International Conference (Moscow, March 14–18, 2016), MPGU, M., 2016, 127–130

[18] Podsypanin V. D., “On the decomposition of irrationalities of the fourth degree into an continued fraction”, Materials of the Interuniversity Scientific Conference of Mathematical Departments Pedagogical institutes of the Central zone (Tula, 1968), 68–70

[19] Podsypanin V. D., “On the decomposition of irrationalities of the fourth power into an continued fraction”, Chebyshevskii sbornik, VIII:3(23) (2007), 43–46 | Zbl

[20] Podsypanin V. D., “On Thue polynomials and the expansion of irrationalities of the fourth degree into a continued fraction”, Chebyshevskii sbornik, XI:4(36) (2010), 25–69

[21] Podsypanin E. V., “On the decomposition of irrationalities of higher powers into a generalized continued fraction (On the materials of V. D. Podsypanin) manuscript 1970”, Chebyshevskii sbornik, 8:3(23) (2007), 47–49 | Zbl

[22] E. V. Podsypinin, “On a generalization of the algorithm of continued fractions associated with the Viggo Brun algorithm”, Zap. Scientific. Sem. LOMI, 67, 1977, 184–194 | Zbl

[23] A. K. Sushkevich, Number theory. Elementary course, 2nd ed., Publishing house of Kharkov state. Un-ta them. A. M. Gorky, Kharkov, 1956, 204 pp.

[24] E. V. Trikolich, E. I. Yushina, “Chain fractions for quadratic Irrationalities from the field $\mathbb Q(\sqrt 5)$”, Chebyshevsky sb., 10:1 (2009), 77–94

[25] Feldman N. I., Approximation of algebraic numbers, Izd-vo Mosk. University, M., 1981, 200 pp.

[26] Khinchin A. Ya., Chain fractions, 2nd ed., GITTL, M.–L., 1949, 116 pp.

[27] Schmidt V. M., Diophantine approximations, Per. With the English, Mir, M., 1983, 232 pp.

[28] E. I. Yushina, “On some reduced algebraic irrationalities”, Modern problems in mathematics, mechanics, informatics, Materials of the Regional Scientific Student Conference, Tula State University, Tula, 2015, 66–72

[29] E. I. Yushina, “On some generalized Piso numbers”, University of the XXI century: research within the framework of scientific schools, Materials of the All-Russian Scientific and Practical Conference, TSPU them. L. N. Tolstoy, Tula, 2015, 66–72

[30] N. M. Dobrovol'skii, N. N. Dobrovolsky, I. N. Balaba, I. Yu. Rebrova, D. K. Sobolev, V. N. Soboleva, Generalized Pisot Numbers and Matrix Decomposition, Advances in Dynamical Systems and Control, Studies in Systems, Decision and Control, 69, eds. V. A. Sadovnichiy, M. Z. Zgurovsky, Springer International Publishing Switzerland, 2016 | DOI | MR | Zbl

[31] Euler L., “De fractinibus continuis”, Comm. Acad. Sci. Imper. Petropol., 9 (1737)

[32] Euler L., “De relatione inter ternas pluresve quantitates instituenda”, Commentationes arithmeticae collectae, Petersburger Akademie Notiz. Exhib. August 14, 1775, v. II, St. Petersburg, 1849, 99–104

[33] Galois E., “Théorème sur les fractions contiues périodiques”, Annales de Mathematiques (Gergonne), 1828/29, Oeuvres mathematiques, 19, Gauthier Villars, Paris, 1951, 294 ; Galua E., Sochineniya, ONTI, M., 1936 | MR

[34] Lagrange J. L., Complement chez Elements d'algebre etc. par M. L. Euler, v. III, 1774 | MR

[35] Liouville J., “Sur des classes très-étendues de quantités dont la irrationelles algébriques”, C. R. Acad. Sci. Paris, 18 (1844), 883–885; 910–911

[36] Roth K. F., “Rational approximations to algebraic numbers”, Mathematika, 2 (1955), 1–20 ; corrigendum: 168 | DOI | MR | Zbl

[37] Thue A., “Über Annäherungswerte algebraischer Zahlen”, J. reine ang. Math., 135 (1910), 284–305 | MR