On fractional linear transformations of forms A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina
Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 54-97
Voir la notice de l'article provenant de la source Math-Net.Ru
The work builds on the algebraic theory of polynomials Tue. The theory is based on the study of submodules of $\mathbb Z[t]$-module $\mathbb Z[t]^2$. Considers submodules that are defined by one defining relation and one defining relation $k$-th order. More complex submodule is the submodule given by one polynomial relation. Sub par Tue $j$-th order are directly connected with polynomials Tue $j$-th order. Using the algebraic theory of pairs of submodules of Tue $j$-th order managed to obtain a new proof of the theorem of M. N. Dobrowolski (senior) that for each $j$ there are two fundamental polynomial Tue $j$-th order, which are expressed through others. Basic polynomials are determined with an accuracy of unimodular polynomial matrices over the ring of integer polynomials.
In the work introduced linear-fractional conversion of TDP-forms. It is shown that the transition from TDP-forms associated with an algebraic number $\alpha$ to TDP-the form associated with the residual fraction to algebraic number $\alpha$, TDP-form is converted under the law, similar to the transformation of minimal polynomials and the numerators and denominators of the respective pairs of Tue is converted using the linear-fractional transformations of the second kind.
Bibliography: 37 titles.
Keywords:
the minimum polynomial of the given algebraic irrationality, residual fractions, continued fractions, TDP-shape, the modules Tue, couple Tue, linear-fractional transformation of the second kind.
@article{CHEB_2017_18_2_a4,
author = {N. M. Dobrovol'skii and I. N. Balaba and I. Yu. Rebrova and N. N. Dobrovol'skii and E. A. Matveeva},
title = {On fractional linear transformations of forms {A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina}},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {54--97},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a4/}
}
TY - JOUR AU - N. M. Dobrovol'skii AU - I. N. Balaba AU - I. Yu. Rebrova AU - N. N. Dobrovol'skii AU - E. A. Matveeva TI - On fractional linear transformations of forms A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina JO - Čebyševskij sbornik PY - 2017 SP - 54 EP - 97 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a4/ LA - ru ID - CHEB_2017_18_2_a4 ER -
%0 Journal Article %A N. M. Dobrovol'skii %A I. N. Balaba %A I. Yu. Rebrova %A N. N. Dobrovol'skii %A E. A. Matveeva %T On fractional linear transformations of forms A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina %J Čebyševskij sbornik %D 2017 %P 54-97 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a4/ %G ru %F CHEB_2017_18_2_a4
N. M. Dobrovol'skii; I. N. Balaba; I. Yu. Rebrova; N. N. Dobrovol'skii; E. A. Matveeva. On fractional linear transformations of forms A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 54-97. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a4/