On fractional linear transformations of forms A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina
Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 54-97

Voir la notice de l'article provenant de la source Math-Net.Ru

The work builds on the algebraic theory of polynomials Tue. The theory is based on the study of submodules of $\mathbb Z[t]$-module $\mathbb Z[t]^2$. Considers submodules that are defined by one defining relation and one defining relation $k$-th order. More complex submodule is the submodule given by one polynomial relation. Sub par Tue $j$-th order are directly connected with polynomials Tue $j$-th order. Using the algebraic theory of pairs of submodules of Tue $j$-th order managed to obtain a new proof of the theorem of M. N. Dobrowolski (senior) that for each $j$ there are two fundamental polynomial Tue $j$-th order, which are expressed through others. Basic polynomials are determined with an accuracy of unimodular polynomial matrices over the ring of integer polynomials. In the work introduced linear-fractional conversion of TDP-forms. It is shown that the transition from TDP-forms associated with an algebraic number $\alpha$ to TDP-the form associated with the residual fraction to algebraic number $\alpha$, TDP-form is converted under the law, similar to the transformation of minimal polynomials and the numerators and denominators of the respective pairs of Tue is converted using the linear-fractional transformations of the second kind. Bibliography: 37 titles.
Keywords: the minimum polynomial of the given algebraic irrationality, residual fractions, continued fractions, TDP-shape, the modules Tue, couple Tue, linear-fractional transformation of the second kind.
@article{CHEB_2017_18_2_a4,
     author = {N. M. Dobrovol'skii and I. N. Balaba and I. Yu. Rebrova and N. N. Dobrovol'skii and E. A. Matveeva},
     title = {On  fractional linear transformations of forms  {A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {54--97},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a4/}
}
TY  - JOUR
AU  - N. M. Dobrovol'skii
AU  - I. N. Balaba
AU  - I. Yu. Rebrova
AU  - N. N. Dobrovol'skii
AU  - E. A. Matveeva
TI  - On  fractional linear transformations of forms  A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 54
EP  - 97
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a4/
LA  - ru
ID  - CHEB_2017_18_2_a4
ER  - 
%0 Journal Article
%A N. M. Dobrovol'skii
%A I. N. Balaba
%A I. Yu. Rebrova
%A N. N. Dobrovol'skii
%A E. A. Matveeva
%T On  fractional linear transformations of forms  A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina
%J Čebyševskij sbornik
%D 2017
%P 54-97
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a4/
%G ru
%F CHEB_2017_18_2_a4
N. M. Dobrovol'skii; I. N. Balaba; I. Yu. Rebrova; N. N. Dobrovol'skii; E. A. Matveeva. On  fractional linear transformations of forms  A.~Thue--M.\,N.~Dobrovolsky--V.\,D.~Podsypanina. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 54-97. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a4/