Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_2_a10, author = {I. A. Petrov}, title = {The structure of almost {Hermitian} structures of total space of principal fiber $T^1$-bundle with flat connection over some classes of almost contact metric manifolds}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {183--194}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a10/} }
TY - JOUR AU - I. A. Petrov TI - The structure of almost Hermitian structures of total space of principal fiber $T^1$-bundle with flat connection over some classes of almost contact metric manifolds JO - Čebyševskij sbornik PY - 2017 SP - 183 EP - 194 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a10/ LA - ru ID - CHEB_2017_18_2_a10 ER -
%0 Journal Article %A I. A. Petrov %T The structure of almost Hermitian structures of total space of principal fiber $T^1$-bundle with flat connection over some classes of almost contact metric manifolds %J Čebyševskij sbornik %D 2017 %P 183-194 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a10/ %G ru %F CHEB_2017_18_2_a10
I. A. Petrov. The structure of almost Hermitian structures of total space of principal fiber $T^1$-bundle with flat connection over some classes of almost contact metric manifolds. Čebyševskij sbornik, Tome 18 (2017) no. 2, pp. 183-194. http://geodesic.mathdoc.fr/item/CHEB_2017_18_2_a10/
[1] Galaev S. V., Shevchova Y. V., “Almost contact metric structures”, Izv. Sarat. un-ta, 15:2 (2015), 136–141 | Zbl
[2] Dondukova N. N., “Projective invariant of cosymplectic manifolds”, Vest. Bur. gos. un-ta, 2011, no. 9, 171–175
[3] Banaru M. B., “On the typical number of weakly cosymplectic hypersurfaces of approximately Kahler manifolds”, Fundament. i prikl. matem., 8:2 (2002), 357–364
[4] Vinberg E. B., Onishchik A. L., Seminar on Lee's groups and algebraic groups, Nauka, M., 1988
[5] Kirichenko V. F., Differential geometric structure on manifolds, Odessa, 2013
[6] Savinov A. V., “Canonical toroidal fibre bundle under an odd-dimensional base”, Vestnik SamGU, 2003, no. 2(28), 57–79
[7] Gray A., Hervella L. M., “The Sixteen Classes of Almost Hermitian Manifolds and Their Linear Invariants”, Annali di Matematica pura ed applicata, CXXIII:IV (1980), 35–38 | DOI | MR
[8] Kirichenko V. F., “Differential geometry of principal toroidal fiber bundles”, Fundamentalnaya i prikladnaya matematika, 6:4 (2000), 1095–1120 | Zbl
[9] Blair D., “Contact manifolds in geometry”, Lecture Notes in Math., 509, 1976, 1–145 | DOI | MR
[10] Kobayashi S., “Principal fibre bundle with the 1-dimensional toroidal group”, Tohoku Math. J., 8 (1956), 29–45 | DOI | MR | Zbl
[11] Watanabe Y., “Riemannian metrics on principal circle bundles over lokally symmetric Kahlerian manifolds”, Kodai Math. J., 5 (1982), 111–121 | DOI | MR | Zbl
[12] Borisovskii I. P., “On the geometry of principal T1-bundles over Hodge manifolds”, Math. Notes, 64:6 (1998), 714–718 | DOI | DOI | MR | Zbl
[13] Ignatochkina L. A., “Generalization for transformations of T1-bundle which induced by conformal transformations of their base”, Sb. Math., 202:5 (2011), 665–682 | DOI | DOI | MR | Zbl
[14] Ignatochkina L. A., Analysis on the manifolds, MPSU, M., 2016
[15] Ignatochkina L A., A short guide to the action on principal fiber bundles and the method of the associated $G$-structure, M., 2014