Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_4_a9, author = {V. I. Subbotin}, title = {Ob odnom klasse sil'no simmetrichnyh mnogogrannikov}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {132--140}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a9/} }
V. I. Subbotin. Ob odnom klasse sil'no simmetrichnyh mnogogrannikov. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 132-140. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a9/
[1] Subbotin V. I., “Strongly symmetric polyhedra”, Zapiski nauchnych seminarov POMI, 299, 2003, 314–325
[2] Ziegler G. M., The theory of polyhedra, MCNMO, M., 2014, 568 pp.
[3] Coxeter H. S. M., Regular polytopes, London–NY, 1963, 648 pp. | MR
[4] Zalgaller V. A., Convex polyhedra with regular faces, Zapiski nauchnych seminarov LOMI, 2, 1967, 220 pp.
[5] Subbotin V. I., “On Completely symmetrical polyhedra”, Proc. Int. Conf. on discrete geometry and its applications, M., 2001, 88–89
[6] Subbotin V. I., “The enumeration of polyhedra, strongly symmetrical with respect to rotation”, Proc. Int. School-Seminar on Geometry and Analysis, Rostov-on-Don, 2002, 77–78
[7] Subbotin V. I., “Some generalizations strongly symmetric polyhedra”, Chebyshevskiy sbornik, 16:2 (2015), 222–230
[8] Subbotin V. I., “Characterization of polyhedral partitioning a space”, Voronoy conference on analytic number theory and spatial tessellations (Kiev, September, 22–28, 2003), 46
[9] Emelichev V. A., Kovalev M. M., Kravzov M. K., Polyhedra. Graph. Optimization, Nauka, M., 1981, 344 pp. | MR
[10] Subbotin V. I., “Polyhedra with the maximum number of asymmetrical faces”, Proc. Int. Conf. “Metric geometry of surfaces and polyhedra”, M., 2010, 60–61
[11] Subbotin V. I., “On symmetric polyhedra with asymmetrical faces”, Proc. Int. Seminar “Discrete Mathematics and Its Applications”, M., 2012, 398–400
[12] Timofeenko A. V., “On convex polyhedra with equiangular and parquet faces”, Chebyshevskiy sbornik, 12:2 (2011), 118–126 | Zbl
[13] Efremovich V. A., “Three-dimensional regular polyhedra”, Uspechi matematicheskih nauk, 2:5 (1947), 197
[14] Grek A. S., “Regular polyhedra on a closed surface with the Euler characteristic equal to $-3$”, Izvestiya vischih uchebnyh zavedeniy, ser. Matematika, 1966, no. 6, 50–53
[15] Stringham W. I., “Regular figures in $n$-dimensional space”, Uspechi matematicheskih nauk, 1944, no. 10, 22–33