Approximation approach in certain problems of the theory of Dirichlet series with multiplicative coefficients
Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 124-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a class of Dirichlet series with multiplicative coefficients which define functions holomorphic in the right half of the complex plane, and for which there are sequences of Dirichlet polynomials that converge uniformly to these functions in any rectangle within the critical strip. We call such polynomials approximating Dirichlet polynomials. We study the properties of the approximating polynomials, in particular, for those Dirichlet series, whose coefficients are determined by nonprincipal generalized characters, i.e. finite-valued numerical characters which do not vanish on almost all prime numbers and whose summatory function is bounded. These developments are interesting in connection with the problem of the analytical continuation of such Dirichlet series to the entire complex plane, which in turn is tied with the solution of a well-known Chudakov hypothesis about every generalized character being a Dirichlet character. Bibliography: 15 items.
Keywords: Dirichlet series, summatory function of coeffiecients, generalized character, Dirichlet character, approximating polynomials.
@article{CHEB_2016_17_4_a8,
     author = {V. N. Kuznetsov and O. A. Matveeva},
     title = {Approximation approach in certain problems of the theory of {Dirichlet} series with multiplicative coefficients},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {124--131},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a8/}
}
TY  - JOUR
AU  - V. N. Kuznetsov
AU  - O. A. Matveeva
TI  - Approximation approach in certain problems of the theory of Dirichlet series with multiplicative coefficients
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 124
EP  - 131
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a8/
LA  - ru
ID  - CHEB_2016_17_4_a8
ER  - 
%0 Journal Article
%A V. N. Kuznetsov
%A O. A. Matveeva
%T Approximation approach in certain problems of the theory of Dirichlet series with multiplicative coefficients
%J Čebyševskij sbornik
%D 2016
%P 124-131
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a8/
%G ru
%F CHEB_2016_17_4_a8
V. N. Kuznetsov; O. A. Matveeva. Approximation approach in certain problems of the theory of Dirichlet series with multiplicative coefficients. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 124-131. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a8/

[1] Kuznetsov V. N., Matveeva O. A., “On the boundary behavior of a class of Dirichlet series”, Chebyshevskij sbornik, 17:2 (2016), 162–169

[2] Kuznetsov V. N., Matveeva O. A., “On the boundary behavior of a class of Dirichlet series with multiplicative coefficients”, Chebyshevskij sbornik, 17:3 (2016), 115–124 | Zbl

[3] Chudakov N. G., Linnik U. V., “On a class of completely multiplicative functions”, DAN SSSR, 74:2 (1950), 133–136

[4] Chudakov N. G., Rodosskij K. A., “On a generalized character”, DAN SSSR, 74:4 (1950), 1137–1138

[5] Chudakov N. G., Bredichin B. M., “Usage of Parseval's equation for estimating summation functions of characters of numerical semigroups”, UMN, 9:2 (1956), 347–360

[6] Matveev V. A., Matveeva O. A., “On a behavior of the Dirichlet series with finitely valued coefficients and bounded summatory function in the critical strip”, Chebyshevskij sbornik, 13:2 (2012), 106–116 | Zbl

[7] Karatsuba A. A., Basics of anaytic number theory, Nauka, M., 1983

[8] Titchmarsh E. K., Riemann zets-function theory, IL, M., 1953

[9] Glazkov V. V., Issledovanija po teorii chisel, Mezhvuz. sb. nauch. tr., v. 2, Publ. SSU, 1968, 3–40

[10] Kuznetsov V. N., “Analogue of the Szego theorem for a class of Dirichlet series”, Math. issues, 36:6 (1984), 805–812

[11] Kuznetsov V. N., Matveeva O. A., “Extended Riemann Hypothesis and zeros of functions defined by Dirichlet series with periodic coefficients”, Chebyshevskij sbornik, 11:1 (2010), 188–198 | Zbl

[12] Korotkov A. E., Matveeva O. A., “On a numerical algorithm for determining zeros of entire functions defined by Dirichlet series with periodic coefficients”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta, 2011, no. 24, 47–54

[13] Matveeva O. A., “Approximation polynomials and the behavior of the Dirichlet L-functions on the critical band”, Izvestiia Saratovskogo un-ta. Seriia «Matematika. Informatika. Mekhanika», 13:4 (2013), 80–84

[14] Matveeva O. A., “On the zeros of Dirichlet polynomials that approximate Dirichlet L-functions in the critical band”, Chebyshevskij sbornik, 14:2 (2013), 117–121

[15] Matveeva O. A., “Almost periodic functions and density theorems for Dirichlet series with periodic coefficients”, Algebra i teorija chisel: sovremennye problemy i prilozhenija, Materialy XII Mezhdunarodnoj koferencii (Tula, 2014), 238–239