Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_4_a8, author = {V. N. Kuznetsov and O. A. Matveeva}, title = {Approximation approach in certain problems of the theory of {Dirichlet} series with multiplicative coefficients}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {124--131}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a8/} }
TY - JOUR AU - V. N. Kuznetsov AU - O. A. Matveeva TI - Approximation approach in certain problems of the theory of Dirichlet series with multiplicative coefficients JO - Čebyševskij sbornik PY - 2016 SP - 124 EP - 131 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a8/ LA - ru ID - CHEB_2016_17_4_a8 ER -
%0 Journal Article %A V. N. Kuznetsov %A O. A. Matveeva %T Approximation approach in certain problems of the theory of Dirichlet series with multiplicative coefficients %J Čebyševskij sbornik %D 2016 %P 124-131 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a8/ %G ru %F CHEB_2016_17_4_a8
V. N. Kuznetsov; O. A. Matveeva. Approximation approach in certain problems of the theory of Dirichlet series with multiplicative coefficients. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 124-131. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a8/
[1] Kuznetsov V. N., Matveeva O. A., “On the boundary behavior of a class of Dirichlet series”, Chebyshevskij sbornik, 17:2 (2016), 162–169
[2] Kuznetsov V. N., Matveeva O. A., “On the boundary behavior of a class of Dirichlet series with multiplicative coefficients”, Chebyshevskij sbornik, 17:3 (2016), 115–124 | Zbl
[3] Chudakov N. G., Linnik U. V., “On a class of completely multiplicative functions”, DAN SSSR, 74:2 (1950), 133–136
[4] Chudakov N. G., Rodosskij K. A., “On a generalized character”, DAN SSSR, 74:4 (1950), 1137–1138
[5] Chudakov N. G., Bredichin B. M., “Usage of Parseval's equation for estimating summation functions of characters of numerical semigroups”, UMN, 9:2 (1956), 347–360
[6] Matveev V. A., Matveeva O. A., “On a behavior of the Dirichlet series with finitely valued coefficients and bounded summatory function in the critical strip”, Chebyshevskij sbornik, 13:2 (2012), 106–116 | Zbl
[7] Karatsuba A. A., Basics of anaytic number theory, Nauka, M., 1983
[8] Titchmarsh E. K., Riemann zets-function theory, IL, M., 1953
[9] Glazkov V. V., Issledovanija po teorii chisel, Mezhvuz. sb. nauch. tr., v. 2, Publ. SSU, 1968, 3–40
[10] Kuznetsov V. N., “Analogue of the Szego theorem for a class of Dirichlet series”, Math. issues, 36:6 (1984), 805–812
[11] Kuznetsov V. N., Matveeva O. A., “Extended Riemann Hypothesis and zeros of functions defined by Dirichlet series with periodic coefficients”, Chebyshevskij sbornik, 11:1 (2010), 188–198 | Zbl
[12] Korotkov A. E., Matveeva O. A., “On a numerical algorithm for determining zeros of entire functions defined by Dirichlet series with periodic coefficients”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta, 2011, no. 24, 47–54
[13] Matveeva O. A., “Approximation polynomials and the behavior of the Dirichlet L-functions on the critical band”, Izvestiia Saratovskogo un-ta. Seriia «Matematika. Informatika. Mekhanika», 13:4 (2013), 80–84
[14] Matveeva O. A., “On the zeros of Dirichlet polynomials that approximate Dirichlet L-functions in the critical band”, Chebyshevskij sbornik, 14:2 (2013), 117–121
[15] Matveeva O. A., “Almost periodic functions and density theorems for Dirichlet series with periodic coefficients”, Algebra i teorija chisel: sovremennye problemy i prilozhenija, Materialy XII Mezhdunarodnoj koferencii (Tula, 2014), 238–239