Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_4_a7, author = {V. N. Kuznetsov and T. A. Kuznetsova and L. V. Bessonov}, title = {Limited operator semigroups and issues of the convergence of the {Bubnov--Galerkin} method for one class of shallow shells nonlinear equations}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {110--123}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a7/} }
TY - JOUR AU - V. N. Kuznetsov AU - T. A. Kuznetsova AU - L. V. Bessonov TI - Limited operator semigroups and issues of the convergence of the Bubnov--Galerkin method for one class of shallow shells nonlinear equations JO - Čebyševskij sbornik PY - 2016 SP - 110 EP - 123 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a7/ LA - ru ID - CHEB_2016_17_4_a7 ER -
%0 Journal Article %A V. N. Kuznetsov %A T. A. Kuznetsova %A L. V. Bessonov %T Limited operator semigroups and issues of the convergence of the Bubnov--Galerkin method for one class of shallow shells nonlinear equations %J Čebyševskij sbornik %D 2016 %P 110-123 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a7/ %G ru %F CHEB_2016_17_4_a7
V. N. Kuznetsov; T. A. Kuznetsova; L. V. Bessonov. Limited operator semigroups and issues of the convergence of the Bubnov--Galerkin method for one class of shallow shells nonlinear equations. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 110-123. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a7/
[1] Terekhin A. P., “Polugruppy operatorov i smeshannye svoistva elementov banakhova prostranstva”, Mat. zametki, 16:1 (1974), 107–115 | Zbl
[2] Kuznetsova T. A., Otyskanie polgruppy operatorov tselogo ekspotentsial'nogo tipa na zadannykh podprostranstvakh, Dis. \ldots k-ta fiz.-mat. nauk, Saratov, 1980, 82 pp.
[3] Sobolev V. I., “O sobstvennykh elementakh nekotorykh nelineinykh operatorov”, DAN, 31 (1941), 734–736 | Zbl
[4] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Izdatel'stvo tekhniko-teoreticheskoi literatury, M., 1967
[5] Kuznetsov V. N., Metod posledovatel'nogo vozmushcheniia parametrov v prilozhenii k raschetu dinamicheskoi ustoichivosti tonkostennykh obolochechnykh konstruktsii, Dis. \ldots d-ra tekhn. nauk, Saratov, 2000
[6] Petrov V. V., Metod posledovatel'nykh nagruzhenii v nelineinoi teorii plastin i obolochek, Izd-vo Sarat. un-ta, Saratov, 1975, 118 pp.
[7] Kuznetsov V. N., Kuznetsova T. A., Chumakova S. V., “Operatornye metody v nelineinoi dinamike”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 1, Izd-vo Sarat. un-ta, Saratov, 2003, 70–80
[8] Kuznetsov V. N., Kuznetsova T. A., Chumakova S. V. i dr., “Operatornyi podkhod k zadache staticheskoi poteri ustoichivosti obolochechnykh konstruktsii”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 1, Izd-vo Sarat. un-ta, Saratov, 2003, 59–70
[9] Kuznetsov T. A., Baev K. A., Chumakova S. V., “Metod fiktivnykh oblastei v teorii obolochechnykh konstruktsii i ego chislennaia realizatsiia”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 4, Izd-vo Sarat. un-ta, Saratov, 2007, 55–59 | Zbl
[10] Kuznetsov V. N., Kuznetsova T. A., Chumakova S. V., “O chislennoi realizatsii metoda posledovatel'nykh nagruzhenii pri raschete geometricheski nelineinykh obolochek”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 6, Izd-vo Sarat. un-ta, Saratov, 2010, 27–43 | Zbl
[11] Lions Zh. L., Nekotorye metody resheniia nelineinykh kraevykh zadach, Mir, M., 1972, 104 pp.
[12] Mikhlin S. G., Chislennaia realizatsiia variatsionnykh metodov, Nauka, M., 1966, 280 pp.
[13] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatlit, M., 1962, 710 pp.
[14] Bessonov L. V., “Chislennaia realizatsiia algoritma spektral'nogo kriteriia lokal'noi poteri ustoichivosti obolochechnoi konstruktsii”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 7, Izd-vo Sarat. un-ta, Saratov, 2012, 3–9
[15] Bessonov L. V., “Geometricheskie parametry i tochki lokal'noi poteri ustoichivosti tsilindricheskoi obolochki”, Studencheskaia nauka: perekrestki teorii i praktiki, Materialy I Vnutrivuzovskoi nauchno-prakticheskoi konferentsii studentov i aspirantov (Saratov, 2013), 20–23
[16] Bessonov L. V., “Chislennaia realizatsiia metoda posledovatel'nogo vozmushcheniia parametrov pri raschete napriazhenno-deformirovannogo sostoianiia obolochechnoi konstruktsii v sluchae zhestkogo zakrepleniia kraev obolochki”, Izv. Sarat. un-ta Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:1 (2015), 74–79 | DOI
[17] Bessonov L. V., “Ob operatornom podkhode pri raschete napriazhenno-deformirovannogo sostoianiia obolochechnykh konstruktsii”, XI Vserossiiskii s"ezd po fundamental'nym problemam teoreticheskoi i prikladnoi mekhaniki (Kazan', 2015), 467–469
[18] Bessonov L. V., “Chislennaia realizatsiia spektral'nogo kriteriia opredeleniia tochek lokal'noi poteri ustoichivosti obolochechnoi konstruktsii”, Materialy XIX Mezhdunarodnoi konferentsii po vychislitel'noi mekhanike i sovremennym prikladnym programmnym sistemam, VMSPPS'2015 (Moskva, 2015), 223–225
[19] Bessonov L. V., “Numerical Realization of The Method of Subsequent Parameters Perturbation for Calculating a Stress-Strain State of The Shell”, Applied Mechanics and Materials, 799–800 (2015), 656–659 | DOI