Limited operator semigroups and issues of the convergence of the Bubnov--Galerkin method for one class of shallow shells nonlinear equations
Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 110-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses issues related to the rate of convergence of the Bubnov–Galerkin method in numerical calculation of stress-strain state of geometrically nonlinear shells in the dynamic case. To address these issues involved the unit strongly continuous semigroups of limited operators. Methods of functional semigroups of operators was applied effectively in the theory of boundary value problems since the 60s XX-th century. It should be noted author E. Hill, R. Phillips, S. G. Krein, S. Mizohata and others. So, using the methods of strongly continuous semigroups of operators S. G. Krein proved a new theorem on the existence and uniqueness of solutions of linear equations of mechanics in late 60s. In 2000, V. N. Kuznetsov and T. A. Kuznetsova first used the methods limited semigroups of operators to solution of linear equations of shallow shells, which solved the problem of smoothness of solutions of linear systems of equations of shells. At the same time V. N. Kuznetsov and T. A. Kuznetsova have developed a method called a linear approximation in separated parameters, which allow to solve the problem of smoothness of solutions of nonlinear equations of the theory of plates and shells. This made it possible to determine the speed of convergence of the Bubnov–Galerkin method the numerical solution of nonlinear boundary value problems for the geometrically nonlinear shells in the area of sustainability in the parameters. In this paper, we complete the proof of the result of the rate of convergence of the Bubnov–Galerkin method in the case of an arbitrary configuration shell borders.
Keywords: limited semigroup, geometrically nonlinear shell, the method of linear approximation on separated parameters, the order of convergence of the Bubnov–Galerkin method rate.
@article{CHEB_2016_17_4_a7,
     author = {V. N. Kuznetsov and T. A. Kuznetsova and L. V. Bessonov},
     title = {Limited operator semigroups and issues of the convergence of the {Bubnov--Galerkin} method for one class of shallow shells nonlinear equations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {110--123},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a7/}
}
TY  - JOUR
AU  - V. N. Kuznetsov
AU  - T. A. Kuznetsova
AU  - L. V. Bessonov
TI  - Limited operator semigroups and issues of the convergence of the Bubnov--Galerkin method for one class of shallow shells nonlinear equations
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 110
EP  - 123
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a7/
LA  - ru
ID  - CHEB_2016_17_4_a7
ER  - 
%0 Journal Article
%A V. N. Kuznetsov
%A T. A. Kuznetsova
%A L. V. Bessonov
%T Limited operator semigroups and issues of the convergence of the Bubnov--Galerkin method for one class of shallow shells nonlinear equations
%J Čebyševskij sbornik
%D 2016
%P 110-123
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a7/
%G ru
%F CHEB_2016_17_4_a7
V. N. Kuznetsov; T. A. Kuznetsova; L. V. Bessonov. Limited operator semigroups and issues of the convergence of the Bubnov--Galerkin method for one class of shallow shells nonlinear equations. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 110-123. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a7/

[1] Terekhin A. P., “Polugruppy operatorov i smeshannye svoistva elementov banakhova prostranstva”, Mat. zametki, 16:1 (1974), 107–115 | Zbl

[2] Kuznetsova T. A., Otyskanie polgruppy operatorov tselogo ekspotentsial'nogo tipa na zadannykh podprostranstvakh, Dis. \ldots k-ta fiz.-mat. nauk, Saratov, 1980, 82 pp.

[3] Sobolev V. I., “O sobstvennykh elementakh nekotorykh nelineinykh operatorov”, DAN, 31 (1941), 734–736 | Zbl

[4] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Izdatel'stvo tekhniko-teoreticheskoi literatury, M., 1967

[5] Kuznetsov V. N., Metod posledovatel'nogo vozmushcheniia parametrov v prilozhenii k raschetu dinamicheskoi ustoichivosti tonkostennykh obolochechnykh konstruktsii, Dis. \ldots d-ra tekhn. nauk, Saratov, 2000

[6] Petrov V. V., Metod posledovatel'nykh nagruzhenii v nelineinoi teorii plastin i obolochek, Izd-vo Sarat. un-ta, Saratov, 1975, 118 pp.

[7] Kuznetsov V. N., Kuznetsova T. A., Chumakova S. V., “Operatornye metody v nelineinoi dinamike”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 1, Izd-vo Sarat. un-ta, Saratov, 2003, 70–80

[8] Kuznetsov V. N., Kuznetsova T. A., Chumakova S. V. i dr., “Operatornyi podkhod k zadache staticheskoi poteri ustoichivosti obolochechnykh konstruktsii”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 1, Izd-vo Sarat. un-ta, Saratov, 2003, 59–70

[9] Kuznetsov T. A., Baev K. A., Chumakova S. V., “Metod fiktivnykh oblastei v teorii obolochechnykh konstruktsii i ego chislennaia realizatsiia”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 4, Izd-vo Sarat. un-ta, Saratov, 2007, 55–59 | Zbl

[10] Kuznetsov V. N., Kuznetsova T. A., Chumakova S. V., “O chislennoi realizatsii metoda posledovatel'nykh nagruzhenii pri raschete geometricheski nelineinykh obolochek”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 6, Izd-vo Sarat. un-ta, Saratov, 2010, 27–43 | Zbl

[11] Lions Zh. L., Nekotorye metody resheniia nelineinykh kraevykh zadach, Mir, M., 1972, 104 pp.

[12] Mikhlin S. G., Chislennaia realizatsiia variatsionnykh metodov, Nauka, M., 1966, 280 pp.

[13] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatlit, M., 1962, 710 pp.

[14] Bessonov L. V., “Chislennaia realizatsiia algoritma spektral'nogo kriteriia lokal'noi poteri ustoichivosti obolochechnoi konstruktsii”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 7, Izd-vo Sarat. un-ta, Saratov, 2012, 3–9

[15] Bessonov L. V., “Geometricheskie parametry i tochki lokal'noi poteri ustoichivosti tsilindricheskoi obolochki”, Studencheskaia nauka: perekrestki teorii i praktiki, Materialy I Vnutrivuzovskoi nauchno-prakticheskoi konferentsii studentov i aspirantov (Saratov, 2013), 20–23

[16] Bessonov L. V., “Chislennaia realizatsiia metoda posledovatel'nogo vozmushcheniia parametrov pri raschete napriazhenno-deformirovannogo sostoianiia obolochechnoi konstruktsii v sluchae zhestkogo zakrepleniia kraev obolochki”, Izv. Sarat. un-ta Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:1 (2015), 74–79 | DOI

[17] Bessonov L. V., “Ob operatornom podkhode pri raschete napriazhenno-deformirovannogo sostoianiia obolochechnykh konstruktsii”, XI Vserossiiskii s"ezd po fundamental'nym problemam teoreticheskoi i prikladnoi mekhaniki (Kazan', 2015), 467–469

[18] Bessonov L. V., “Chislennaia realizatsiia spektral'nogo kriteriia opredeleniia tochek lokal'noi poteri ustoichivosti obolochechnoi konstruktsii”, Materialy XIX Mezhdunarodnoi konferentsii po vychislitel'noi mekhanike i sovremennym prikladnym programmnym sistemam, VMSPPS'2015 (Moskva, 2015), 223–225

[19] Bessonov L. V., “Numerical Realization of The Method of Subsequent Parameters Perturbation for Calculating a Stress-Strain State of The Shell”, Applied Mechanics and Materials, 799–800 (2015), 656–659 | DOI