Problem of Nesterenko and method of Bernik
Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 180-184
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we prove that, if integer polynomial $P$ satisfies $|P(\omega)|_p$, then for $w>2n-2$ and sufficiently large $H$ the root $\gamma$ belongs to the field of $p$-adic numbers.
Bibliography: 16 titles.
Keywords:
integer polynomials, discriminants of polynomials.
@article{CHEB_2016_17_4_a13,
author = {N. V. Budarina and H. O'Donnell},
title = {Problem of {Nesterenko} and method of {Bernik}},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {180--184},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a13/}
}
N. V. Budarina; H. O'Donnell. Problem of Nesterenko and method of Bernik. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 180-184. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a13/