Problem of Nesterenko and method of Bernik
Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 180-184

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we prove that, if integer polynomial $P$ satisfies $|P(\omega)|_p$, then for $w>2n-2$ and sufficiently large $H$ the root $\gamma$ belongs to the field of $p$-adic numbers. Bibliography: 16 titles.
Keywords: integer polynomials, discriminants of polynomials.
@article{CHEB_2016_17_4_a13,
     author = {N. V. Budarina and H. O'Donnell},
     title = {Problem of {Nesterenko} and method of {Bernik}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {180--184},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a13/}
}
TY  - JOUR
AU  - N. V. Budarina
AU  - H. O'Donnell
TI  - Problem of Nesterenko and method of Bernik
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 180
EP  - 184
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a13/
LA  - en
ID  - CHEB_2016_17_4_a13
ER  - 
%0 Journal Article
%A N. V. Budarina
%A H. O'Donnell
%T Problem of Nesterenko and method of Bernik
%J Čebyševskij sbornik
%D 2016
%P 180-184
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a13/
%G en
%F CHEB_2016_17_4_a13
N. V. Budarina; H. O'Donnell. Problem of Nesterenko and method of Bernik. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 180-184. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a13/