Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_4_a13, author = {N. V. Budarina and H. O'Donnell}, title = {Problem of {Nesterenko} and method of {Bernik}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {180--184}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a13/} }
N. V. Budarina; H. O'Donnell. Problem of Nesterenko and method of Bernik. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 180-184. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a13/
[1] Y. V. Nesterenko, Roots of polynomials in $p$-adic fields, Preprint
[2] N. Budarina, H. O'Donnell, On a problem of Nesterenko: when is the closest root of a polynomial a real number?, International Journal of Number Theory, 8:3 (2012), 801–811 | DOI | MR | Zbl
[3] A. Baker, W. M. Schmidt, “Diophantine approximation and Hausdorff dimension”, Proc. Lond. Math. Soc., 21 (1970), 1–11 | DOI | MR | Zbl
[4] V. I. Bernik, M. M. Dodson, Metric Diophantine approximation on manifolds, Cambridge Tracts in Math., 137, Cambridge Univ. Press, 1999 | MR | Zbl
[5] H. Dickinson, S. Velani, “Hausdorff measure and linear forms”, J. reine angew. Math., 490 (1997), 1–36 | MR | Zbl
[6] V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90 (1999), 97–112 | MR | Zbl
[7] V. Bernik, N. Budarina, D. Dickinson, “A divergent Khintchine theorem in the real, complex, and $p$-adic fields”, Lith. Math. J., 48:2 (2008), 158–173 | DOI | MR | Zbl
[8] Y. Bugeaud, “Approximation by algebraic integers and Hausdorff dimension”, J. Lond. Math. Soc., 65 (2002), 547–559 | DOI | MR | Zbl
[9] V. I. Bernik, D. Vasiliev, “Khintchine theorem for the integer polynomials of complex variable”, Tr. Inst. Mat. Nats. Akad. Navuk Belarusi, 3 (1999), 10–20 | Zbl
[10] V. V. Beresnevich, V. I. Bernik, E. I. Kovalevskaya, “On approximation of $p$-adic numbers by $p$-adic algebraic numbers”, J. Number Theory, 111:1 (2005), 33–56 | DOI | MR | Zbl
[11] V. Bernik, “An application of Hausdorff dimension in the theory of Diophantine approximation”, Acta Arith., 42 (1983), 219–253 | MR | Zbl
[12] V. Bernik, “On the exact order of approximation of zero by values of integral polynomials”, Acta Arith., 53 (1989), 17–28 | MR | Zbl
[13] V. Sprindžuk, Mahler's problem in the metric theory of numbers, Translations of Mathematical Monographs, 25, Amer. Math. Soc., Providence, RI, 1969
[14] V. I. Bernik, “The metric theorem on the simultaneous approximation of zero by values of integer polynomials”, Izv. Akad. Nauk SSSR, Ser. Mat., 44 (1980), 24–45 | MR | Zbl
[15] V. Bernik, D. Dickinson, J. Yuan, “Inhomogeneous diophantine approximation on polynomials in $\mathbb{Q}_p$”, Acta Arith., 90:1 (1999), 37–48 | MR | Zbl
[16] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, Cambridge, 2004 | MR