Problem of Nesterenko and method of Bernik
Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 180-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we prove that, if integer polynomial $P$ satisfies $|P(\omega)|_p$, then for $w>2n-2$ and sufficiently large $H$ the root $\gamma$ belongs to the field of $p$-adic numbers. Bibliography: 16 titles.
Keywords: integer polynomials, discriminants of polynomials.
@article{CHEB_2016_17_4_a13,
     author = {N. V. Budarina and H. O'Donnell},
     title = {Problem of {Nesterenko} and method of {Bernik}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {180--184},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a13/}
}
TY  - JOUR
AU  - N. V. Budarina
AU  - H. O'Donnell
TI  - Problem of Nesterenko and method of Bernik
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 180
EP  - 184
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a13/
LA  - en
ID  - CHEB_2016_17_4_a13
ER  - 
%0 Journal Article
%A N. V. Budarina
%A H. O'Donnell
%T Problem of Nesterenko and method of Bernik
%J Čebyševskij sbornik
%D 2016
%P 180-184
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a13/
%G en
%F CHEB_2016_17_4_a13
N. V. Budarina; H. O'Donnell. Problem of Nesterenko and method of Bernik. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 180-184. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a13/

[1] Y. V. Nesterenko, Roots of polynomials in $p$-adic fields, Preprint

[2] N. Budarina, H. O'Donnell, On a problem of Nesterenko: when is the closest root of a polynomial a real number?, International Journal of Number Theory, 8:3 (2012), 801–811 | DOI | MR | Zbl

[3] A. Baker, W. M. Schmidt, “Diophantine approximation and Hausdorff dimension”, Proc. Lond. Math. Soc., 21 (1970), 1–11 | DOI | MR | Zbl

[4] V. I. Bernik, M. M. Dodson, Metric Diophantine approximation on manifolds, Cambridge Tracts in Math., 137, Cambridge Univ. Press, 1999 | MR | Zbl

[5] H. Dickinson, S. Velani, “Hausdorff measure and linear forms”, J. reine angew. Math., 490 (1997), 1–36 | MR | Zbl

[6] V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90 (1999), 97–112 | MR | Zbl

[7] V. Bernik, N. Budarina, D. Dickinson, “A divergent Khintchine theorem in the real, complex, and $p$-adic fields”, Lith. Math. J., 48:2 (2008), 158–173 | DOI | MR | Zbl

[8] Y. Bugeaud, “Approximation by algebraic integers and Hausdorff dimension”, J. Lond. Math. Soc., 65 (2002), 547–559 | DOI | MR | Zbl

[9] V. I. Bernik, D. Vasiliev, “Khintchine theorem for the integer polynomials of complex variable”, Tr. Inst. Mat. Nats. Akad. Navuk Belarusi, 3 (1999), 10–20 | Zbl

[10] V. V. Beresnevich, V. I. Bernik, E. I. Kovalevskaya, “On approximation of $p$-adic numbers by $p$-adic algebraic numbers”, J. Number Theory, 111:1 (2005), 33–56 | DOI | MR | Zbl

[11] V. Bernik, “An application of Hausdorff dimension in the theory of Diophantine approximation”, Acta Arith., 42 (1983), 219–253 | MR | Zbl

[12] V. Bernik, “On the exact order of approximation of zero by values of integral polynomials”, Acta Arith., 53 (1989), 17–28 | MR | Zbl

[13] V. Sprindžuk, Mahler's problem in the metric theory of numbers, Translations of Mathematical Monographs, 25, Amer. Math. Soc., Providence, RI, 1969

[14] V. I. Bernik, “The metric theorem on the simultaneous approximation of zero by values of integer polynomials”, Izv. Akad. Nauk SSSR, Ser. Mat., 44 (1980), 24–45 | MR | Zbl

[15] V. Bernik, D. Dickinson, J. Yuan, “Inhomogeneous diophantine approximation on polynomials in $\mathbb{Q}_p$”, Acta Arith., 90:1 (1999), 37–48 | MR | Zbl

[16] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, Cambridge, 2004 | MR