On hyperbolic Hurwitz zeta function
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 72-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a new object of study — hyperbolic Hurwitz zeta function, which is given in the right $\alpha$-semiplane $ \alpha = \sigma + it $, $ \sigma> 1 $ by the equality $$ \zeta_H(\alpha; d, b) = \sum_{m \in \mathbb Z} \left(\, \overline{dm + b} \, \right)^{-\alpha}, $$ where $ d \neq0 $ and $ b $ — any real number. Hyperbolic Hurwitz zeta function $ \zeta_H (\alpha; d, b) $, when $ \left\| \frac {b} {d} \right\|> 0 $ coincides with the hyperbolic zeta function of shifted one-dimensional lattice $ \zeta_H (\Lambda (d, b) | \alpha) $. The importance of this class of one-dimensional lattices is due to the fact that each Cartesian lattice is represented as a union of a finite number of Cartesian products of one-dimensional shifted lattices of the form $ \Lambda (d, b) = d \mathbb{Z} + b $. Cartesian products of one-dimensional shifted lattices are in substance shifted diagonal lattices, for which in this paper the simplest form of a functional equation for the hyperbolic zeta function of such lattices is given. The connection of the hyperbolic Hurwitz zeta function with the Hurwitz zeta function $ \zeta^* (\alpha; b)$ periodized by parameter $b$ and with the ordinary Hurwitz zeta function $ \zeta (\alpha; b) $ is studied. New integral representations for these zeta functions and an analytic continuation to the left of the line $ \alpha = 1 + it $ are obtained. All considered hyperbolic zeta functions of lattices form an important class of Dirichlet series directly related to the development of the number-theoretical method in approximate analysis. For the study of such series the use of Abel's theorem is efficient, which gives an integral representation through improper integrals. Integration by parts of these improper integrals leads to improper integrals with Bernoulli polynomials, which are also studied in this paper. Bibliography: 34 titles.
Keywords: Hurwitz zeta function, periodised Hurwitz zeta function, Hurwitz zeta function of the second kind, hyperbolic Hurwitz zeta function, lattice, hyperbolic zeta function of lattice, zeta function of lattice, Bernoulli polynomials, Hankel contour.
@article{CHEB_2016_17_3_a6,
     author = {N. M. Dobrovolsky and N. N. Dobrovolsky and V. N. Soboleva and D. K. Sobolev and L. P. Dobrovol'skaya and O. E. Bocharova},
     title = {On hyperbolic {Hurwitz} zeta function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {72--105},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a6/}
}
TY  - JOUR
AU  - N. M. Dobrovolsky
AU  - N. N. Dobrovolsky
AU  - V. N. Soboleva
AU  - D. K. Sobolev
AU  - L. P. Dobrovol'skaya
AU  - O. E. Bocharova
TI  - On hyperbolic Hurwitz zeta function
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 72
EP  - 105
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a6/
LA  - ru
ID  - CHEB_2016_17_3_a6
ER  - 
%0 Journal Article
%A N. M. Dobrovolsky
%A N. N. Dobrovolsky
%A V. N. Soboleva
%A D. K. Sobolev
%A L. P. Dobrovol'skaya
%A O. E. Bocharova
%T On hyperbolic Hurwitz zeta function
%J Čebyševskij sbornik
%D 2016
%P 72-105
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a6/
%G ru
%F CHEB_2016_17_3_a6
N. M. Dobrovolsky; N. N. Dobrovolsky; V. N. Soboleva; D. K. Sobolev; L. P. Dobrovol'skaya; O. E. Bocharova. On hyperbolic Hurwitz zeta function. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 72-105. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a6/

[1] Gel'fond A. O., Calculus of finite differences, Nauka, M., 1977, 376 pp.

[2] Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N., Multidimensional Number-theoretic grid and lattice algorithms for finding the optimal coefficients, Izd-vo TSPU L. N. Tolstoy, Tula, 2012, 283 pp.

[3] Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N., “Hyperbolic zeta-functions on nets and lattices and computation of optimal coefficients”, Chebyshevskii sbornik, 13:4(44) (2012), 4–107

[4] Dobrovolskiy M. N., “A functional equation for the hyperbolic zeta function of integer lattices”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 2007, no. 3, 18–23

[5] Dobrovolskiy M. N., Some questions Number-theoretic methods in approximate analysis, Dissertation of the candidate physical and mathematical sciences, M., 2009

[6] Dobrovolskiy M. N., Some questions Number-theoretic methods in approximate analysis, Author's abstract of dissertation of the candidate physical and mathematical sciences, M., 2009

[7] Dobrovolskiy N. M., Hyperbolic zeta function of lattices, Dep. v VINITI 24.08.84, No 6090-84, 1984

[8] Dobrovolskiy N. M., Number-theoretic nets and applications, Dissertation of the candidate of physical and mathematical sciences, Tula, 1984

[9] Dobrovolskiy N. M., Number-theoretic nets and applications, Author's abstract of dissertation of the candidate of physical and mathematical sciences, M., 1985

[10] Dobrovolskiy N. M., “Number-theoretic nets and applications”, Number Theory and Its Applications, Proc. rep. All-Union. Conf. (Tbilisi, 1985), 67–70 | MR

[11] Dobrovolskiy N. M., Multidimensional number-theoretic nets and lattices and their applications, Dissertation of the doctor of physical and mathematical sciences, Tula, 2000

[12] Dobrovolskiy N. M., Multidimensional number-theoretic nets and lattices and their applications, Author's abstract of dissertation of the doctor of physical and mathematical sciences, M., 2000

[13] Dobrovolskiy N. M., Multidimensional number-theoretic nets and lattices and their applications, Izd-vo TSPU L. N. Tolstoy, Tula, 2005, 195 pp.

[14] Dobrovolskiy N. M., Vankova V. C., “On hyperbolic zeta functions of algebraic lattices”, Number theory and its applications, Proc. rep. Republics. Conf. (Tashkent, 1990), 22

[15] Dobrovolskiy N. M., Vankova V. C., Kozlov S. L., Hyperbolic zeta functions of algebraic lattices, Dep. v VINITI 12.04.90, No 2327-B90, 1990

[16] Dobrovolskiy N. M., Dobrovolskiy N. N., Soboleva V. N., Sobolev D. K., Yushina E. I., “Hyperbolic zeta function of lattice over quadratic field”, Chebyshevskii sbornik, 16:4(56) (2015), 100–149

[17] Dobrovolskiy N. M., Roshchenya A. L., Rebrova I. Yu., “Continuity of the hyperbolic zeta function of lattices”, Mat. Zametki, 63:4 (1998), 522–526 | DOI

[18] Dobrovolskiy N. M., Roshchenya A. L., “Number of lattice points in the hyperbolic cross”, Algebraic, probability, geometry, and combinatorial functional methods in the theory of numbers, Coll. mes. rep. II International. Conf. (Voronezh, 1995), 53

[19] Dobrovolskiy N. M., Roshchenya A. L., “Analytic continuation of the hyperbolic zeta-function of rational lattices”, Modern problems theory numbers and its applications, Coll. mes. rep. III International. Conf. (Tula, 1996), 49

[20] Dobrovolskiy N. M., Roshchenya A. L., “On the continuity of the hyperbolic zeta function of lattices”, Izvestija Tulskogo gosudarstvennogo universiteta. Ser. Mathematics. Mechanics. Computer science, 2:1 (1996), 77–87 | MR

[21] Dobrovolskiy N. M., Roshchenya A. L., “Number of lattice points in the hyperbolic cross”, Mat. Zametki, 63:3 (1998), 363–369 | DOI

[22] Karatsuba A. A., Basics analytic number theory, Nauka, M., 1983, 240 pp.

[23] Korobov N. M., Number-theoretic methods in approximate analysis, Fizmatgiz, M., 2004, 288 pp.

[24] Rebrova I. Yu., “Continuity of the hyperbolic zeta function of lattices”, Modern problems of number theory, Tez. rep. III International. Conf. (Tula, 1996), 119

[25] Rebrova I. Yu., “The continuity of the generalized hyperbolic zeta function of lattices and its analytic continuation”, Izvestija Tulskogo gosudarstvennogo universiteta. Ser. Mathematics. Mechanics. Computer science, 4:3 (1998), 99–108 | Zbl

[26] Rebrova I. Yu., The space lattices and functions on it, Dissertation of the candidate of physical and mathematical sciences, M., 1999

[27] Rebrova I. Yu., The space lattices and functions on it, Author's abstract of dissertation of the candidate of physical and mathematical sciences, M., 1999

[28] Roshchenya A. L., Analytic continuation of the hyperbolic zeta function of lattices, Dissertation of the candidate of physical and mathematical sciences, M., 1998

[29] Roshchenya A. L., Analytic continuation of the hyperbolic zeta function of lattices, Author's abstract dissertation of the candidate of physical and mathematical sciences, M., 1998

[30] Titchmarsh E. K., The theory of the Riemann zeta function, IL, M., 1953, 408 pp.

[31] Whittaker E. T., Watson D. H., Course of modern analysis, v. Transcendental functions, Fizmatgiz, M., 1963, 516 pp.

[32] Chandrasekharan K., Introduction to analytic number theory, Mir, M., 1974, 188 pp.

[33] Chudakov H. G., Introduction to the Theory of $L$-functions of Dirichlet, OGIZ, M.–L., 1947, 204 pp.

[34] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol'skii, N. N. Dobrovolsky, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems, Solid Mechanics and Its Applications, 211, 2014, 23–62 | DOI | MR | Zbl