On one Arkhipov--Karatsuba's system of congruencies
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 186-190

Voir la notice de l'article provenant de la source Math-Net.Ru

The Arkhipov–Karatsuba's system of congruencies by arbitrary modulo, greater than a degree of forms in it, has a solution for any right-hand parts, and for the number on unknowns exceeding the value $8(n+1)^2\log_2n+12(n+1)^2+4(n+1),$ where $n$ is the degree of forms of this system. Bibliography: 9 titles.
Keywords: diophantine equations, Arkhipov–Karatsuba's system.
@article{CHEB_2016_17_3_a13,
     author = {H. M. Saliba},
     title = {On one {Arkhipov--Karatsuba's} system of congruencies},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {186--190},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a13/}
}
TY  - JOUR
AU  - H. M. Saliba
TI  - On one Arkhipov--Karatsuba's system of congruencies
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 186
EP  - 190
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a13/
LA  - ru
ID  - CHEB_2016_17_3_a13
ER  - 
%0 Journal Article
%A H. M. Saliba
%T On one Arkhipov--Karatsuba's system of congruencies
%J Čebyševskij sbornik
%D 2016
%P 186-190
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a13/
%G ru
%F CHEB_2016_17_3_a13
H. M. Saliba. On one Arkhipov--Karatsuba's system of congruencies. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 186-190. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a13/