On the structure of the resonance set of a real polynomial
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 5-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the resonance set of a real polynomial, i. e. the set of all the points of the coefficient space at which the polynomial has commensurable roots. The resonance set of a polynomial can be considered as a certain generalization of its discriminant set. The structure of the resonance set is useful for investigation of resonances near stationary point of a dynamical system. The constructive algorithm of computation of polynomial parametrization of the resonance set is provided. The structure of the resonance set of a polynomial of degree $n$ is described in terms of partitions of the number $n$. The main algorithms, described in the paper, are organized as a library of the computer algebra system Maple. The description of the resonance set of a cubic polynomial is given. Bibliography: 12 titles.
Keywords: elimination theory, subresultant, subdiscriminant, resonance set, computer algebra.
@article{CHEB_2016_17_3_a0,
     author = {A. B. Batkhin},
     title = {On the structure of the resonance set of a real polynomial},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a0/}
}
TY  - JOUR
AU  - A. B. Batkhin
TI  - On the structure of the resonance set of a real polynomial
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 5
EP  - 17
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a0/
LA  - ru
ID  - CHEB_2016_17_3_a0
ER  - 
%0 Journal Article
%A A. B. Batkhin
%T On the structure of the resonance set of a real polynomial
%J Čebyševskij sbornik
%D 2016
%P 5-17
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a0/
%G ru
%F CHEB_2016_17_3_a0
A. B. Batkhin. On the structure of the resonance set of a real polynomial. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 5-17. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a0/