On the structure of the resonance set of a real polynomial
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 5-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the resonance set of a real polynomial, i. e. the set of all the points of the coefficient space at which the polynomial has commensurable roots. The resonance set of a polynomial can be considered as a certain generalization of its discriminant set. The structure of the resonance set is useful for investigation of resonances near stationary point of a dynamical system. The constructive algorithm of computation of polynomial parametrization of the resonance set is provided. The structure of the resonance set of a polynomial of degree $n$ is described in terms of partitions of the number $n$. The main algorithms, described in the paper, are organized as a library of the computer algebra system Maple. The description of the resonance set of a cubic polynomial is given. Bibliography: 12 titles.
Keywords: elimination theory, subresultant, subdiscriminant, resonance set, computer algebra.
@article{CHEB_2016_17_3_a0,
     author = {A. B. Batkhin},
     title = {On the structure of the resonance set of a real polynomial},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a0/}
}
TY  - JOUR
AU  - A. B. Batkhin
TI  - On the structure of the resonance set of a real polynomial
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 5
EP  - 17
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a0/
LA  - ru
ID  - CHEB_2016_17_3_a0
ER  - 
%0 Journal Article
%A A. B. Batkhin
%T On the structure of the resonance set of a real polynomial
%J Čebyševskij sbornik
%D 2016
%P 5-17
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a0/
%G ru
%F CHEB_2016_17_3_a0
A. B. Batkhin. On the structure of the resonance set of a real polynomial. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 5-17. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a0/

[1] Batkhin A. B., “Structure of discriminant set of real polynomial”, Chebyshevskii Sb. (Tula), 16:2 (2015), 23–34 (in Russian) | MR

[2] Batkhin A. B., “Parametrization of the discriminant set of a real polynomial”, Keldysh Institute preprints, 2015, 076, 36 pp. (in Russian) | Zbl

[3] Batkhin A. B., “Parameterization of the Discriminant Set of a Polynomial”, Programming and Computer Software, 42:2 (2016), 65–76 | DOI | MR | Zbl

[4] Batkhin A. B., “Structure of the resonance set of a real polynomial”, Keldysh Institute preprints, 2016, 029, 23 pp. (in Russian)

[5] Batkhin A. B., “Non-linear stability of the Hamiltonian system on linear approximation”, Keldysh Institute preprints, 2012, 033, 24 pp. (in Russian)

[6] Batkhin A. B., “Segregation of stability domains of the Hamilton nonlinear system”, Automation and Remote Control, 74:8 (2013), 1269–1283 | DOI | MR | MR | Zbl

[7] Kalinina E. A., Uteshev A. Yu., Elimination theory, Izd-vo NII Khimii SPbGU, Saint-Petersburg, 2002

[8] Basu S., Pollack R., Roy M.-F., Algorithms in Real Algebraic Geometry, Algorithms and Computations in Mathematics, 10, Springer-Verlag, Berlin–Heidelberg–New York, 2006, ix+662 pp. | MR | Zbl

[9] Jury E., Inners and stability of dynamic systems, John Wiley and Sons, 1974 | MR | Zbl

[10] Gathen J. von zur, Luücking T., “Subresultants revisited”, Theoretical Computer Science, 297:1–3 (2003), 199–239 | DOI | MR | Zbl

[11] Andrews G., The Theory of Partitions, Cambridge University Press, 1998 | MR | Zbl

[12] Macdonald I. A., Symmetric Functions and Hall Polynomials, Oxford University Press, 1998 | Zbl

[13] Sloane N., The on-line encyclopedia of integer sequences, , 2015 http://oeis.org

[14] Prasolov V. V., Polynomials, Algorithms and Computation in Mathematics, 11, Springer, Berlin–Heidelberg, 2004 | DOI | MR | Zbl

[15] Moser J., “New aspects in the theory of stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 11:1 (1958), 81–114 | DOI | MR | Zbl