Mots-clés : subdiscriminant
@article{CHEB_2016_17_3_a0,
author = {A. B. Batkhin},
title = {On the structure of the resonance set of a real polynomial},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {5--17},
year = {2016},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a0/}
}
A. B. Batkhin. On the structure of the resonance set of a real polynomial. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 5-17. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a0/
[1] Batkhin A. B., “Structure of discriminant set of real polynomial”, Chebyshevskii Sb. (Tula), 16:2 (2015), 23–34 (in Russian) | MR
[2] Batkhin A. B., “Parametrization of the discriminant set of a real polynomial”, Keldysh Institute preprints, 2015, 076, 36 pp. (in Russian) | Zbl
[3] Batkhin A. B., “Parameterization of the Discriminant Set of a Polynomial”, Programming and Computer Software, 42:2 (2016), 65–76 | DOI | MR | Zbl
[4] Batkhin A. B., “Structure of the resonance set of a real polynomial”, Keldysh Institute preprints, 2016, 029, 23 pp. (in Russian)
[5] Batkhin A. B., “Non-linear stability of the Hamiltonian system on linear approximation”, Keldysh Institute preprints, 2012, 033, 24 pp. (in Russian)
[6] Batkhin A. B., “Segregation of stability domains of the Hamilton nonlinear system”, Automation and Remote Control, 74:8 (2013), 1269–1283 | DOI | MR | MR | Zbl
[7] Kalinina E. A., Uteshev A. Yu., Elimination theory, Izd-vo NII Khimii SPbGU, Saint-Petersburg, 2002
[8] Basu S., Pollack R., Roy M.-F., Algorithms in Real Algebraic Geometry, Algorithms and Computations in Mathematics, 10, Springer-Verlag, Berlin–Heidelberg–New York, 2006, ix+662 pp. | MR | Zbl
[9] Jury E., Inners and stability of dynamic systems, John Wiley and Sons, 1974 | MR | Zbl
[10] Gathen J. von zur, Luücking T., “Subresultants revisited”, Theoretical Computer Science, 297:1–3 (2003), 199–239 | DOI | MR | Zbl
[11] Andrews G., The Theory of Partitions, Cambridge University Press, 1998 | MR | Zbl
[12] Macdonald I. A., Symmetric Functions and Hall Polynomials, Oxford University Press, 1998 | Zbl
[13] Sloane N., The on-line encyclopedia of integer sequences, , 2015 http://oeis.org
[14] Prasolov V. V., Polynomials, Algorithms and Computation in Mathematics, 11, Springer, Berlin–Heidelberg, 2004 | DOI | MR | Zbl
[15] Moser J., “New aspects in the theory of stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 11:1 (1958), 81–114 | DOI | MR | Zbl