On the solution of the bilinear matrix equation
Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 196-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lyapunov matrix equations and their generalizations — linear matrix Sylvester equation widely used in the theory of stability of motion, control theory, as well as the solution of differential Riccati and Bernoulli equations, partial differential equations and signal processing. If the structure of the general solution of the homogeneous part of the Lyapunov equation is well studied, the solution of the inhomogeneous equation Sylvester and, in particular, the Lyapunov equation is quite cumbersome. By using the theory of generalized inverse operators, A. A. Boichuk and S. A. Krivosheya establish a criterion of the solvability of the Lyapunov-type matrix equations $AX - XB = D$ and $X - AXB = D$ and investigate the structure of the set of their solutions. The article A.A. Boichuk and S.A. Krivosheya based on pseudo-inverse linear matrix operator $\mathcal{L},$ corresponding to the homogeneous part of the Lyapunov type equation. Using the technique of Moore–Penrose pseudo inverse matrices, we suggest an algorithm for finding a family of linearly independent solutions of the bilinear matrix equation and, in particular, the Sylvester matrix equation in general case when the linear matrix operator $\mathcal{L},$ corresponding to the homogeneous part of the bilinear matrix equation, has no inverse. We find an expression for family of linearly independent solutions of the bilinear matrix equation and, in particular, the Sylvester matrix equation in terms of projectors and Moore-Penrose pseudo inverse matrices. This result is a generalization of the result article A. A. Boichuk and S. A. Krivosheya to the case of bilinear matrix equation. The suggested the solvability conditions and formula for constructing a particular solution of the inhomogeneous bilinear matrix equation is illustrated by an examples. Bibliography: 17 titles.
Keywords: matrix Sylvester equation, matrix Lyapunov equation, pseudo inverse matrices.
@article{CHEB_2016_17_2_a12,
     author = {S. M. Chuiko},
     title = {On the solution of the bilinear matrix equation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {196--205},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a12/}
}
TY  - JOUR
AU  - S. M. Chuiko
TI  - On the solution of the bilinear matrix equation
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 196
EP  - 205
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a12/
LA  - ru
ID  - CHEB_2016_17_2_a12
ER  - 
%0 Journal Article
%A S. M. Chuiko
%T On the solution of the bilinear matrix equation
%J Čebyševskij sbornik
%D 2016
%P 196-205
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a12/
%G ru
%F CHEB_2016_17_2_a12
S. M. Chuiko. On the solution of the bilinear matrix equation. Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 196-205. http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a12/

[1] Gantmacher F. R., Theory of matrices, AMS, Chelsea publishing, 1959 | MR | MR

[2] Bellman R. E., Introduction to matrix analysis, McGraw-Hill, New York, 1960 | MR | MR | Zbl

[3] Lancaster P., Theory of matrices, Academic Press, New York–London, 1972 | MR | MR

[4] Daletskii Yu. L., Krein M. G., Stability of Solutions of Differential Equations in a Banach Space, Nauka, M., 1970 (in Russian) | MR

[5] Boichuk A. A., Krivosheya S. A., “Criterion of the solvability of matrix equations of the Lyapunov type”, Ukrainian Mathematical Journal, 50:8 (1998), 1162–1169 | DOI | MR | Zbl

[6] Chuiko S. M., “On the solution of the matrix Lyapunov equation”, Visn. Kharkovskogo Univ. Ser. Mat. Mech., 2014, no. 1120, 85–94 | MR

[7] Chuiko S. M., “On the solution of the matrix Sylvester equation”, Visn. Odesskogo Univ. Ser. Mat. Mech., 19:1(21) (2014), 49–57 | Zbl

[8] Chuiko S. M., “On the solution of the generalized matrix Sylvester equation”, Chebyshevskiy Sb., 16:1 (2015), 52–66 | MR

[9] Zakhar-Itkin M. X., “Matrix differential Riccati equation and a semigroup of linear-fractional transformation”, Uspekhi Mat. Nauk, XXVIII:3 (1973), 83–120 | Zbl

[10] Derevenskiy V. P., “Matrix Bernoulli equation. I”, Izvestia Vuzov. Mathematica, 2008, no. 2, 14–23

[11] Voevodin V. V., Kuznetsov Yu. A., Matrices and Calculations, Nauka, M., 1984 (in Russian)

[12] Chuiko S. M., “Generalized Green Operator of Noetherian boundary-value problem for matrix differential equation”, Russian Mathematics, 60:8 (2016), 64–73 | DOI

[13] Tikhonov A. N., Arsenin V. Ya., Methods for Solving Ill-Posed Problems, Nauka, M., 1986 (in Russian)

[14] Chuiko S. M., Chuiko E. V., “On the regularization of a periodical boundary-value problem by a degenerate pulsed action”, Bukovinskiy Mathematicheskiy Zhurnal, 1:3–4 (2013), 158–161 | Zbl

[15] Chuiko S. M., “On the regularization of a linear Fredholm boundary-value problem by a degenerate pulsed action”, Journal of Mathematical Sciences, 197:1 (2014), 138–150 | DOI | MR | Zbl

[16] Chuiko S. M., “A generalized matrix differential-algebraic equation”, Journal of Mathematical Sciences (N.Y.), 210:1 (2015), 9–21 | DOI | MR | Zbl

[17] Chuiko S. M., “The Green's operator of a generalized matrix linear differential-algebraic boundary value problem”, Siberian Mathematical Journal, 56:4 (2015), 752–760 | DOI | MR | Zbl