Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_4_a7, author = {I. V. Dobrynina and D. Z. Kagan}, title = {On the width of verbal subgroups in some classes of groups}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {150--163}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a7/} }
I. V. Dobrynina; D. Z. Kagan. On the width of verbal subgroups in some classes of groups. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 150-163. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a7/
[1] Merzlyakov Y. I., Rational groups, Nauka, M., 1987 | MR
[2] Merzlyakov Y. I., “Algebraic linear groups as full groups of automorphisms and closure of their verbal subgroups”, Algebra and logic, 6:1 (1967), 83–94 | MR | Zbl
[3] Rhemtulla A. H., “A problem of bounded expressibility in free products”, Proc. Cambridge Phil. Soc., 64:3 (1968), 573–584 | DOI | MR | Zbl
[4] Rhemtulla A. H., “A problem of bounded expressibility in free products”, Proc. Cambridge Phil. Soc., 64:3 (1968), 573–584 | DOI | DOI | MR | MR | Zbl | Zbl
[5] Grigorchuk R. I., “Bounded cohomology of group constructions”, Mat. Zametki, 59:4 (1996), 546–550 | DOI | MR | MR | Zbl | Zbl
[6] Dobrynina I. V., “On the width in free products with amalgamation”, Mat. Zametki, 68:3 (2000), 353–359 | DOI | MR | Zbl
[7] Fa\v{i}ziev V. A., “A problem of expressibility in some amalgamated products of groups”, J. Austral. Math. Soc., 71 (2001), 105–115 | DOI | MR
[8] Dobrynina I. V., “Solution of the width problem in amalgamated free products”, Fundam. Prikl. Mat., 15:1 (2009), 23–30
[9] Dobrynina I. V., Bezverkhnii V. N., “On width in some class of groups with two generators and one defining relation”, Proc. Steklov Inst. Math. Algebra. Topology, 2001, 53–60 | MR | MR
[10] Kagan D. Z., “Width of verbal subgroups for groups with one defining relation”, Algebra, number theory and discrete geometry: Modern Problems and Application, XIII International Conference (Tula, 2015), 76–78
[11] Kagan D. Z., “Pseudocharacters on free groups, invariant with respect to some types of endomorphisms”, Fundam. Prikl. Mat., 17:2 (2012), 167–176 | Zbl
[12] Ito N. A., “A theorem of alternating group $A_n \ (n\geq5)$”, Math. Japon, 2:2 (1951), 59–60 | MR | Zbl
[13] Ore S., “Some remarks on commutators”, Proc. Amer. Math. Soc., 2 (1951), 307–314 | DOI | MR | Zbl
[14] Kagan D. Z., “On the existence of non-trivial Pseudocharacters on anomalous products of groups”, Vestnik MGU, 2004, no. 6, 24–28
[15] Kagan D. Z., “Pseudocharacters on anomalous products of locally indicable groups”, Fundam. Prikl. Mat., 12:3 (2006), 55–64 | MR | Zbl
[16] Gluhov M. M., Zubov A. Y., “On the lengths of the symmetric and alternating groups of substitutions in the different systems forming”, Mathematical questions of cybernetics, 1999, no. 8, 5–32 | MR
[17] Kourov's Writing-Book. Unsolved problems in group theory, 10th edition, Novosibirsk, 1986
[18] Repin N. N., “On the commutator equations in the groups $B_3$ and $B_4$”, Algorithmic problems in group theory and semigroups (Tula, 1986), 114–117
[19] Semenov Y. S., “On the commutators in braid groups”, The 10th All-Union symposium on group theory, Abstracts (Minsk, 1986), 207
[20] Durnev V. G., On the width of the commutator subgroup of the braid groups $B_3$ and $B_4$", Dep. v VINITI, No 4040-V87, 1987
[21] Durnev V. G., Shalashov V. K., “On the width of the commutator subgroup of the braid groups $B_3$ and $B_4$”, The 19th All-Union algebraic conference, Abstracts (Lviv, 1987), 89
[22] Bardakov V. G., “On the theory of braid groups”, Mat. Sb., 183:6 (1992), 3–42
[23] Bardakov V. G., “The width of verbal subgroups of certain Artin groups, group and metric properties of mappings”, The collection of papers dedicated to the memory of Y. I. Merzlyakov, Novosibirsk, 1995, 8–18
[24] Bezverkhnii V. N., Dobrynina I. V., “Solution of the finite width problem in Artin groups with two generators”, Chebyshevskii Sb., 3:1(3) (2002), 11–16 | MR
[25] Myasnikov A., Nikolaev A., “Verbal subgroups of hyperbolic groups have infinite width”, J. Lond. Math. Soc.-Second Ser. II, 90:2 (2014), 573–591 | DOI | MR | Zbl