Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_4_a13, author = {M. M. Petrunin}, title = {Calculation of the fundamental $S$-units in hyperelliptic fields of genus $2$ and the torsion problem in the jacobians of hyperelliptic curves}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {250--283}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a13/} }
TY - JOUR AU - M. M. Petrunin TI - Calculation of the fundamental $S$-units in hyperelliptic fields of genus $2$ and the torsion problem in the jacobians of hyperelliptic curves JO - Čebyševskij sbornik PY - 2015 SP - 250 EP - 283 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a13/ LA - ru ID - CHEB_2015_16_4_a13 ER -
%0 Journal Article %A M. M. Petrunin %T Calculation of the fundamental $S$-units in hyperelliptic fields of genus $2$ and the torsion problem in the jacobians of hyperelliptic curves %J Čebyševskij sbornik %D 2015 %P 250-283 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a13/ %G ru %F CHEB_2015_16_4_a13
M. M. Petrunin. Calculation of the fundamental $S$-units in hyperelliptic fields of genus $2$ and the torsion problem in the jacobians of hyperelliptic curves. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 250-283. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a13/
[1] Platonov V. P., “Arithmetic of quadratic fields and torsion in Jacobians”, Dokl. Math., 81:1 (2010), 55–57 | DOI | MR | Zbl
[2] Platonov V. P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | DOI | MR | Zbl
[3] Platonov V. P., Petrunin M. M., “New orders of torsion points in Jacobians of curves of genus 2 over the rational number field”, Dokl. Math., 85:2 (2012), 286–288 | DOI | MR | Zbl
[4] Platonov V. P., Petrunin M. M., “On the torsion problem in jacobians of curves of genus 2 over the rational number field”, Dokl. Math., 86:2 (2012), 642–643 | DOI | MR | Zbl
[5] Platonov V. P., Petrunin M. M., “Fundamental S-units in hyperelliptic fields and the torsion problem in jacobians of hyperelliptic curves”, Dokl. Math., 92:3 (2015), 23–25 | DOI
[6] Benyash-Krivets V. V., Platonov V. P., “Groups of S-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | DOI | DOI | MR | Zbl
[7] Lang S., Introduction to diophantine approximations, Addison-Wesley Pub. Co., Reading, Mass., 1966 | MR | Zbl
[8] Flynn E. V., “Large rational torsion on abelian varieties”, J. Number Theory, 1990, 257–265 | DOI | MR | Zbl
[9] Leprevost F., “Famille de courbes de genre 2 munies dune classe de diviseurs rationnels dordre 13”, C. R. Acad. Sci. Paris Ser. I Math., 313:7 (1991), 451–454 | MR | Zbl
[10] Leprevost F., “Familles de courbes de genre 2 munies dune classe de diviseurs rationnels d'ordre”, C. R. Acad. Sci. Paris Ser. I Math., 313:11 (1991), 771–774 | MR | Zbl
[11] Leprevost F., “Points rationnels de torsion de jacobiennes de certaines courbes de genre 2”, C.R. Acad. Sci. Paris, 316:8 (1993), 819–821 | MR | Zbl
[12] Ogawa H., “Curves of genus 2 with a rational torsion divisor of order 23”, Proc. Japan Acad. Ser. A Math. Sci., 70:9 (1994), 295–298 | DOI | MR | Zbl
[13] Leprevost F., “Jacobiennes de certaines courbes de genre 2: torsion et simplicite”, Journal de Theorie des Nombres de Bordeaux, 7:1 (1995), 283–306 | DOI | MR | Zbl
[14] W. S. Cassels, E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, Cambridge Univ. Press, 1996 | MR | Zbl
[15] E. W. Howe, F. Leprévost, B. Poonen, “Large torsion subgroups of split Jacobians of curves of genus two or three”, Forum Mathematicum, 12 (2000), 315–364 | DOI | MR | Zbl
[16] Nicolas B., Leprevost F., Pohst M., “Jacobians of genus-2 curves with a rational point of order 11”, Experiment. Math., 18:1 (2009), 65–70 | DOI | MR | Zbl
[17] Elkies N. D., Curves of genus 2 over Q whose Jacobians are absolutely simple abelian surfaces with torsion points of high order, preprint, Harvard University, 2010
[18] Howe E. W., “Genus-2 Jacobians with torsion points of large order”, Bulletin of the London Mathematical Society, 47:1 (2015), 127–135 | DOI | MR | Zbl
[19] Hart W., Van Hoeij M., Novocin A., “Practical polynomial factoring in polynomial time”, Proceedings of the 36th international symposium on Symbolic and algebraic computation, ACM, 2011, 163–170 | MR | Zbl