Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_4_a12, author = {A. N. Panov}, title = {Old and new in the supercharacter theory of finite groups}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {227--249}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a12/} }
A. N. Panov. Old and new in the supercharacter theory of finite groups. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 227-249. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a12/
[1] Drozd Yu., “Matrix problems, small reduction and representations of mixed groups”, Representations of Algebras and Related Topics, Cambridge Univ. Press, Cambridge, 1992 | MR
[2] Andre C. A. M., “Basic characters of the unitriangular group”, Journal of Algebra, 175 (1995), 287–319 | DOI | MR | Zbl
[3] Andre C. A. M., “Basic sums of coadjoint orbits of the unitriangular group”, Journal of Algebra, 176 (1995), 959–1000 | DOI | MR | Zbl
[4] Andre C. A. M., “The basic character table of the unitriangular group”, Journal of Algebra, 241 (2001), 437–471 | DOI | MR | Zbl
[5] Andre C. A. M., “The basic characters of the unitriangular group (for arbitrary primes)”, Proc. Am. Math. Soc., 130 (2002), 1943–1954 | DOI | MR | Zbl
[6] Ning Yan, Representation theory of finite unipotent linear groups, Ph.D. Thesis, Department of mathematics. University of Pennsylvania, 2001; arXiv: 1004.2674
[7] Diaconis P., Isaacs I. M., “Supercharacters and superclasses for algebra groups”, Trans. Amer. Math. Soc., 360 (2008), 2359–2392 | DOI | MR | Zbl
[8] Panov A. N., “Invariants of the coadjoint action o the basic varieties of the unitriangular group”, Transformation groups, 20 (2015), 229–246 | DOI | MR | Zbl
[9] Panov A. N., “Supercharacter theory for groups of invertible elements of reduced algebras”, Algebra i Analys
[10] Panov A. N., Supercharacters for the finite groups of triangular type, arXiv: 1508.05767
[11] Panov A. N., “The orbit method for unipotent groups over finite fields”, Zapiski POMI, 414, 2013, 127–137
[12] Ignatev M. V., Introduction to the orbit method over field, MCIME, M., 2014
[13] Pierce R., Associative algebras, Springer-Verlag, New York, 1982 | MR | MR | Zbl
[14] Curtis C., Reiner I., Representation theory of finite groups and associative algebras, Interscience Publishers a division of John Wiley Sons, New York, 1962 | MR | MR | Zbl
[15] Kirillov A. A., “Variations on the triangular theme”, Amer. Math. Soc. Transl., 169 (1995), 43–73 | MR | Zbl
[16] Kazhdan D., “Proof of Springer hypothesis”, Israil J. Math., 28 (1977), 272–284 | DOI | MR
[17] Isaacs I. M., Karagueuzian D., “Involution and characters of upper triangular matrix groups”, Math. of Computation, 74:252 (2005), 2027–2033 | DOI | MR | Zbl
[18] Brumbaugh J. L., Bulkow M., Fleming P. S., Garcia L. A., Garcia S. R., Karaali G., Michal M., Turner A. P., Suh H., “Supercharacters, exponentioal sums and the uncertainty principle”, Journal of Number theory, 144 (2014), 151–175 | DOI | MR | Zbl
[19] Fowler C. F., Garcia S. R., Karaali G., “Ramanujan sums as supercharacters”, The Ramanujan Journal, 32 (2014), 205–241 | DOI | MR
[20] Thiem N., “Branching rules in the sing of super functions of unipotent upper-triangular matrices”, Journal of Algebraic combinatorics, 31 (2010), 267–298 | DOI | MR | Zbl
[21] Thiem N., Venkateswaran V., “Restricting supercharacters of the finite unipotent upertriangular matrices”, Electronic Journal of Combinatorics, 16 (2009), 23 | MR
[22] Marberg E., Theim N., “Superinduction for pattern groups”, Journal of Algebra, 321 (2009), 3681–3703 | DOI | MR | Zbl
[23] Diaconis P., Thiem N., “Supercharacter formulas for pattern groups”, Trans. Am. Math. Soc., 361 (2009), 3501–3533 | DOI | MR | Zbl
[24] Bragg D., Restrictions of rainbow supercharacters and poset binomials, Ph. D. Thesis, Department of mathematics. University of Colorado, 2013
[25] Bragg D., Thiem N., Restrictions of rainbow supercharacters, arXiv: 1405.2299 | MR
[26] Arias-Castro E., Diaconis P., Stanley R., “A super-class walk on upper-triangular matrices”, Journal of Algebra, 278 (2004), 739–765 | DOI | MR | Zbl
[27] Hendrickson A. O. F., “Supercharacter theory costructions corresponding to Schur ring products”, Comm. Algebra, 40:12 (2012), 4420–4438 | DOI | MR | Zbl
[28] Aguiar M., Andrè C., Benedetti C., Bergeron N., Zhi Chen, Diaconis P., Hendrickson A., Hsiao S., Isaacs I. M., Jedwab A., Johnson K., Karaali G., Lauve A., Tung Le, Lewis S., Huilan Li, Magaarg K., Marberg E., Novelli J-Ch., Amy Pang, Saliola F., Tevlin L., Thibon J.-Y., Thiem N., Venkateswaran V., Vinroot C. R., Ning Yan, Zabricki M., “Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras”, Advances in Mathematics, 229:4 (2012), 2310–2337 | DOI | MR | Zbl