Mots-clés : Gauss double sum
@article{CHEB_2015_16_3_a9,
author = {R. A. Dokhov and U. M. Pachev},
title = {On the weighted number of integer points on some multidimensional hyperboloids},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {219--245},
year = {2015},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a9/}
}
R. A. Dokhov; U. M. Pachev. On the weighted number of integer points on some multidimensional hyperboloids. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 219-245. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a9/
[1] Borevich Z. I., Shafarevich I. R., The theory of numbers, 3rd edition, Nauka, M., 1985, 503 pp. (in Russian) | MR
[2] Vinogradov I. M., Baics of the theory of numbers, 9th edition, Nauka, M., 1981 (in Russian) | MR
[3] Golovizin V. V., “On the distribution of integer points on hyperbolic surfaces of the second order”, Zap. Nauchn. Sem. LOMI, 106, 1981, 52–69 (in Russian) | Zbl
[4] Gritsenko S. A., “On functional equation for one Dirichlet ariphmetic series”, Chebyshevskii Sb., 4:2(6) (2003), 55–67 (in Russian) | MR
[5] Cassels J., Rational quadratic forms, Mir, M., 1982, 436 pp. (in Russian) | MR
[6] Karatsuba A. A., Principles of analytic number theory, Nauka, M., 1983, 240 pp. (in Russian) | MR
[7] Kurtova L. N., “On one binary additive problem with quadratic forms”, Vestn. Samarsk. Gos. Univ. Est.-Nauchn. Ser. Mat., 2007, no. 7(57), 107–121 (in Russian)
[8] Malyshev A. V., “On the representation of integers by positive quadratic forms”, Trudy Mat. Inst. Steklov, 65 (1962), 3–212 (in Russian)
[9] Malyshev A. V., “On the representation of integers by quadratic forms”, Proc. 4th All-Union Mat. Congr., v. 2, 1964, 118–124 (in Russian) | Zbl
[10] Malyshev A. V., “On the weighted number of integer points on a quadric”, Zap. Nauchn. Sem. LOMI, 1 (1966), 6–83 (in Russian) | MR | Zbl
[11] Pachev U. M., Dokhov R. A., “On Gauss doble sums corresponding to classes of ideals of imaginary quadratic field”, Nauchn. Ved. Bel. Gos. Univ., 19(162):32 (2013), 108–119 (in Russian)
[12] Sveshnikov S. A., Tikhonov A. N., The theory of functions of complex variable, Nauka, M., 1967, 304 pp. (in Russian) | MR
[13] Dolciani M. P., “On the representation of integers by quadratic forms”, Thesis Ithaca, New York, 1947, 1–56 | MR
[14] Ogg A. P., Modular Forms and Dirichlet Series, W. A. Benjamin Inc., New York, 1969, 211 pp. | MR | Zbl
[15] Hardy G. H., Wrigth E. M., An introduction to theory of numbers, Oxford, 1938, 421 pp.
[16] Siegel C. L., “Equivalence of quadratic forms”, Amer. J. Math., 63 (1941), 658–680 | DOI | MR