Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_3_a4, author = {R. A. Veprintsev}, title = {Lower estimate of {Jackson's} constant in $L_p$-spaces on the sphere with {Dunkl} weight function associated with dihedral group}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {95--123}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a4/} }
TY - JOUR AU - R. A. Veprintsev TI - Lower estimate of Jackson's constant in $L_p$-spaces on the sphere with Dunkl weight function associated with dihedral group JO - Čebyševskij sbornik PY - 2015 SP - 95 EP - 123 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a4/ LA - ru ID - CHEB_2015_16_3_a4 ER -
%0 Journal Article %A R. A. Veprintsev %T Lower estimate of Jackson's constant in $L_p$-spaces on the sphere with Dunkl weight function associated with dihedral group %J Čebyševskij sbornik %D 2015 %P 95-123 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a4/ %G ru %F CHEB_2015_16_3_a4
R. A. Veprintsev. Lower estimate of Jackson's constant in $L_p$-spaces on the sphere with Dunkl weight function associated with dihedral group. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 95-123. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a4/
[1] Dunkl C. F., “Reflection groups and orthogonal polynomials on the sphere”, Math. Z., 197 (1988), 33–60 | DOI | MR | Zbl
[2] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl
[3] Dunkl C. F., “Operators commuting with Coxeter group actions on polynomials”, Invariant Theory and Tableaux, Springer, 1990, 107–117 | MR
[4] Dunkl C. F., “Integral kernels with reflection group invariance”, Can. J. Math., 43:6 (1991), 1213–1227 | DOI | MR | Zbl
[5] Dunkl C. F., “Hankel transforms associated to finite reflection groups”, Contemp. Math., 138, 1992, 123–138 | DOI | MR | Zbl
[6] Dai F., Xu Y., Approximation theory and harmonic analysis on spheres and balls, Springer, New York, 2013, 440 pp. | MR | Zbl
[7] Berdyshev V. I., “Jackson's theorem in $L_p$”, Trudy Mat. Inst. Steklov, 88, 1967, 3–16 (in Russian) | MR | Zbl
[8] Ivanov V. I., “Lower bound on constant in Jackson inequality in different $L_p$-norms”, Math. Notes, 52:3 (1992), 906–918 | DOI | MR | Zbl
[9] Pichugov S. A., “Jung's constant for the space $L_p$”, Math. Notes, 43:5 (1988), 348–354 | DOI | MR | Zbl
[10] Ivanov V. I., Pichugov S. A., “Jung constants of the $l_p^n$-spaces”, Math. Notes, 48:4 (1990), 997–1004 | DOI | MR | Zbl
[11] Ivanov V. I., “On the relation between the Jackson and Jung constants of the spaces $L_p$”, Math. Notes, 58:6 (1995), 1269–1275 | DOI | MR | Zbl
[12] Ivanov V. I., Yongping Liu, “Lower estimation of Jackson constants in $L_p$-spaces with periodical Jacobi weight”, Izv. TulGU. Estestv. Nauki, 2011, no. 2, 59–69 (in Russian) | MR
[13] Chernykh N. I., “A Jackson inequality in $L_p(0,2\pi)$ ($1\leq p2$) with an exact constant”, Proc. Steklov Inst. Math., 198, no. 1, 1994, 223–231 | MR | Zbl
[14] Ivanov V. I., “Approximation of functions in spaces $L_p$”, Math. Notes, 56:2 (1994), 770–789 | DOI | MR | Zbl
[15] Ivanov V. I., “Approximation in $L_p$ by means of piecewise-constant functions”, Math. Notes, 44:1 (1988), 523–532 | DOI | MR | Zbl
[16] Gorbachev D. V., “The sharp Jackson inequality in the space $L_p$ on the sphere”, Math. Notes, 66:1 (1999), 40–50 | DOI | DOI | MR | Zbl
[17] Chertova D. V., “Jackson theorems in $L_p$-spaces, $1\leq p\leq2$ with periodic Jacobi weight”, Izv. TulGU. Estestv. Nauki, 2009, no. 1, 5–27 (in Russian)
[18] Ivanov V. I., “Direct and inverse theorems in approximation theory for periodic functions in S. B. Stechkin's papers and the development of these theorems”, Proceedings of the Steklov Institute of Mathematics, 273, 1, supplement (2011), 1–13 | DOI | MR | Zbl
[19] Veprintsev R. A., “Some problems of Dunkl harmonic analysis on the sphere and the ball”, Izv. TulGU. Estestv. Nauki, 2013, no. 3, 6–26 (in Russian)
[20] Veprintsev R. A., “Jackson inequality in the spaces $L_p$ on the sphere with Dunkl weight”, Izv. TulGU. Estestv. Nauki, 2013, no. 3, 27–49
[21] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Cambridge University Press, 2014, 420 pp. | MR | Zbl
[22] Andrews G. E., Askey R., Roy R., Special functions, Cambridge University Press, 1999, 664 pp. | MR | Zbl
[23] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publication, 23, American Mathematical Society, Providence, RI, 1975, 431 pp. | MR
[24] Badkov V. M., Introduction to unified theory of algebraic and trigonometric orthogonal polynomials, Izd-vo UrGU, Ekaterinburg, 2006, 132 pp. (in Russian)
[25] Bateman H., Erdélyi A., Higher transcendental functions, v. 2, McGraw-Hill Book Company, New York, 1953 | MR | MR
[26] Suetin P. K., Classical orthogonal polynomials, Fizmatlit, M., 2005, 480 pp. (in Russian)
[27] Badkov V. M., “Approximation of functions by partial sums of a Fourier series of generalized Jacobi polynomials”, Mat. Zametki, 3:6 (1968), 671–682 (in Russian) | MR | Zbl
[28] Ivanov V. I., Introduction to approximation theory, Izd-vo TulGU, Tula, 1999, 116 pp. (in Russian)
[29] Humphreys J. E., Reflection groups and Coxeter groups, Cambridge University Press, 1990, 204 pp. | MR | Zbl
[30] Zygmund A., Trigonometric series, v. I, Cambridge University Press, Cambridge, 2002, 383 pp. | MR | MR | Zbl
[31] Petrov V. V., Limit theorems for sums of independent random variables, Nauka, M., 1987 (in Russian)
[32] Marshall A. W., Olkin I., Inequalities: theory of majorization and its applications, Academic Press, New York, 1979, 569 pp. | MR | MR | Zbl
[33] Ivanov V. I., Smirnov O. I., Jackson constants and Jung constants in $L_p$-spaces, Izd-vo TulGU, Tula, 2010 (in Russian)