On embedding random graphs into distance graphs and graphs of diameters in Euclidean spaces
Čebyševskij sbornik, Tome 16 (2015) no. 2, pp. 133-143
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the problem of finding the probability threshold for the realization of a random graph by geometric graphs in the space ${\mathbb R}^d$. In the case of graphs of diameters we prove asymptotic behavior for the threshold probability on the plane, as well as the exact expression in the case $d \ge 3$.
Bibliography: 18 titles.
Keywords:
distance graph, diameter graph, random graph.
@article{CHEB_2015_16_2_a8,
author = {A. V. Krot and A. M. Raigorodskii},
title = {On embedding random graphs into distance graphs and graphs of diameters in {Euclidean} spaces},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {133--143},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a8/}
}
TY - JOUR AU - A. V. Krot AU - A. M. Raigorodskii TI - On embedding random graphs into distance graphs and graphs of diameters in Euclidean spaces JO - Čebyševskij sbornik PY - 2015 SP - 133 EP - 143 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a8/ LA - ru ID - CHEB_2015_16_2_a8 ER -
A. V. Krot; A. M. Raigorodskii. On embedding random graphs into distance graphs and graphs of diameters in Euclidean spaces. Čebyševskij sbornik, Tome 16 (2015) no. 2, pp. 133-143. http://geodesic.mathdoc.fr/item/CHEB_2015_16_2_a8/