Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_1_a8, author = {N. M. Dobrovol'skii}, title = {About the modern problems of the theory of hyperbolic zeta-functions of~lattices}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {176--190}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a8/} }
N. M. Dobrovol'skii. About the modern problems of the theory of hyperbolic zeta-functions of~lattices. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 176-190. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a8/
[1] Bakhvalov N. S., “On an approximate calculation of multiple integrals”, Vestnik Moskovskogo universiteta, 1959, no. 4, 3–18 (Russian)
[2] Voronin S. M., “On quadrature formulas”, Russian Acad. Sci. Izv. Math., 45:2 (1995), 417–422
[3] Voronin S. M., “On the construction of quadrature formulas”, Izv. Math. Vol., 59:4 (1995), 665–670 | DOI
[4] Voronin S. M., Temirgaliev N., “Quadrature formulas that are connected with divisors of the field of Gaussian numbers”, Math. Notes, 46:2 (1990), 597–602 | DOI
[5] Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N., Multidimensional Number-theoretic grid and lattice algorithms for finding the optimal coefficients, Izd-vo Tul. state PED. University n.a. L. N. Tolstoy, Tula, 2012, 283 pp. (Russian)
[6] Dobrovolskaya L. P., Dobrovol'skii N. M., Dobrovolsky N. N., Ogorodnichuk N. K., Rebrov E. D., Rebrova I. Yu., “Some questions Number-theoretic methods in approximate analysis”, Proceedings of the X international conference, Scientific notes, Orel state University. Ser. Natural, technical and medical science, no. 6(2), 2012, 90–98 (Russian)
[7] Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N., “Hyperbolic Zeta-function grids and sheets the calculation of the optimal coefficients”, Chebyshevskii Sb., 13:4(44) (2012), 4–107 (Russian)
[8] Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N., “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems, Solid Mechanics and Its Applications, 211, 2014, 23–62 | DOI
[9] Dobrovol'skii M. N., “A functional equation for the hyperbolic zeta function of integer lattices”, Moscow Univ. Math. Bull., 62:5 (2007), 186–191 | DOI
[10] Dobrovol'skii N. M., Hyperbolic Zeta function lattices, Dep. v VINITI 24.08.84, No 6090-84, 1984 (Russian)
[11] Dobrovol'skii N. M., Van'kova V. S., Kozlova S. L., Hyperbolic Zeta-function of an algebraic lattices, Dep. v VINITI 12.04.90, No 2327-B90, 1990 (Russian)
[12] Dobrovol'skii N. M., Dobrovol'skii N. N., “About some problems of number-theoretic methods in approximate analysis”, Algebra and number theory: modern problems and applications, Proceedings of the XII international. Conf., dedicated to the 80th anniversary V. N. Latysheva, Izd-vo Tul. state PED. University n.a. L. N. Tolstoy, Tula, 2014, 23–27 (Russian)
[13] Dobrovol'skii N. N., “Discrepancy of two-dimensional Smolyak grids”, Chebyshevskii Sb., 8:1(21) (2007), 110–152 (Russian)
[14] Korobov N. M., “Approximate evaluation of repeated integrals”, Dokl. Akad. Nauk SSSR, 124 (1959), 1207–1210 (Russian)
[15] Korobov N. M., “Computation of multiple integrals by the method of optimal coefficients”, Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him., 1959, no. 4, 19–25 (Russian)
[16] Temirgaliev N., “Application of the theory of divisors to the numerical integration of periodic functions of several variables”, Math. USSR-Sb., 69:2 (1991), 527–542 | DOI
[17] Fel'dman N. I., Approximations of algebraic numbers, Moskov. Gos. Univ., M., 1981, 200 pp. (Russian)
[18] Frolov K. K., “Upper bounds for the errors of quadrature formulae on classes of functions”, Dokl. Akad. Nauk SSSR, 231:4 (1976), 818–821 (Russian)
[19] Frolov K. K., Kvadraturnye formuly na klassakh funktsiy, PhD thesis, VTS AN SSSR, M., 1979 (Russian)