Arithmetic properties of polyadic integers
Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 254-264

Voir la notice de l'article provenant de la source Math-Net.Ru

Arithmetic properties of series of the form $$\sum_{n=0}^\infty a_{n}\cdot n!$$ with $a_n\in\mathbb Z$ are studied. The concept of infinite algebraic independence polyadic numbers. A theorem on the algebraic independence polyadic infinite number of class $ F\left(\mathbb {Q}, C_1, C_2, C_3, d_ {0} \right) $, if they are connected by a system of linear differential equations of a certain kind. Bibliography: 9 titles.
Keywords: polyadic numbers, transcendence.
@article{CHEB_2015_16_1_a14,
     author = {V. G. Chirskii},
     title = {Arithmetic properties of polyadic integers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {254--264},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a14/}
}
TY  - JOUR
AU  - V. G. Chirskii
TI  - Arithmetic properties of polyadic integers
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 254
EP  - 264
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a14/
LA  - ru
ID  - CHEB_2015_16_1_a14
ER  - 
%0 Journal Article
%A V. G. Chirskii
%T Arithmetic properties of polyadic integers
%J Čebyševskij sbornik
%D 2015
%P 254-264
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a14/
%G ru
%F CHEB_2015_16_1_a14
V. G. Chirskii. Arithmetic properties of polyadic integers. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 254-264. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a14/