Arithmetic properties of polyadic integers
Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 254-264
Voir la notice de l'article provenant de la source Math-Net.Ru
Arithmetic properties of series of the form $$\sum_{n=0}^\infty a_{n}\cdot n!$$ with $a_n\in\mathbb Z$ are studied.
The concept of infinite algebraic independence polyadic numbers.
A theorem on the algebraic independence polyadic infinite number of class $ F\left(\mathbb {Q}, C_1, C_2, C_3, d_ {0} \right) $, if they are connected by a system of linear differential equations of a certain kind.
Bibliography: 9 titles.
Keywords:
polyadic numbers, transcendence.
@article{CHEB_2015_16_1_a14,
author = {V. G. Chirskii},
title = {Arithmetic properties of polyadic integers},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {254--264},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a14/}
}
V. G. Chirskii. Arithmetic properties of polyadic integers. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 254-264. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a14/