Generalized Estermann’s ternary problem for noninteger powers with almost equal summands
Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 248-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is obtained in generalized Estermann's ternary problem for noninteger powers with almost equal summands on the representations of a sufficiently large natural number as a sum of two primes and integer part of noninteger power of a natural number. Bibliography: 9 titles.
Keywords: exponential sums, Estermann's ternary problem with noninteger exponents, almost equal summands.
@article{CHEB_2015_16_1_a13,
     author = {P. Z. Rakhmonov},
     title = {Generalized {Estermann{\textquoteright}s} ternary problem for noninteger powers with almost equal summands},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {248--253},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a13/}
}
TY  - JOUR
AU  - P. Z. Rakhmonov
TI  - Generalized Estermann’s ternary problem for noninteger powers with almost equal summands
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 248
EP  - 253
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a13/
LA  - ru
ID  - CHEB_2015_16_1_a13
ER  - 
%0 Journal Article
%A P. Z. Rakhmonov
%T Generalized Estermann’s ternary problem for noninteger powers with almost equal summands
%J Čebyševskij sbornik
%D 2015
%P 248-253
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a13/
%G ru
%F CHEB_2015_16_1_a13
P. Z. Rakhmonov. Generalized Estermann’s ternary problem for noninteger powers with almost equal summands. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 248-253. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a13/

[1] T. Estermann, “Proof that every large integer is the sum of two primes and square”, Proc. London Math. Soc., 11 (1937), 501–516 | DOI

[2] Rakhmonov Z. Kh., “Estermann's Ternary Problem with Almost Equal Summands”, Mathematical Notes, 74:4 (2003), 534–542 | DOI | DOI

[3] Rakhmonov Z. Kh., “The Estermann cubic problem with almost equal summands”, Mathematical Notes, 95:4 (2014), 407–417 | DOI | DOI

[4] Rakhmonov P. Z., “Short sums with a noninteger power of a natural number”, Mathematical Notes, 95:5 (2014), 697–707 (Russian) | DOI | DOI

[5] Rakhmonov P. Z., “Short exponential sums with a non-integer power of a natural number”, Moscow University Mathematics Bulletin, 68:1 (2013), 65–68 | DOI

[6] Karatsuba A. A., Fundamentals of Analytic Number Theory, 2nd edition, Nauka, M., 1983, 240 pp. (Russian)

[7] Voronin S. M., Karatsuba A. A., The Riemann Zeta–Function, Fizmatlit, M., 1994, 376 pp. (Russian)

[8] Rakhmonov Z. Kh., “Estimate of the density of the zeros of the Riemann zeta function”, Russian Mathematical Surveys, 49:2 (1994), 168–169 | DOI

[9] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Trigonometric sums in number theory and analysis, Walter de Gruyter, Berlin–New–York, 2004, 554 pp.