Short Weyl sums and their applications
Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 232-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

We shall study the behavior of short Weyl sums of the form $$ T(\alpha ,x,y)=\sum_{x-y\leq x}e(\alpha m^n) $$ on major arcs and obtain an asymptotic formula for the number of representations of a sufficiently large positive integer $N$ as a sum of 33 fifth powers of positive integers $x_i$, that satisfy $ \left|x_i-\left(\dfrac{N}{33}\right)^{\frac 15}\right|\le H$, $H\ge N^{\frac 15-\frac{1}{340}+\varepsilon}$. Bibliography: 17 titles.
Keywords: Short Weyl sums, Almost equal summands, Circle metods, Waring's problem.
@article{CHEB_2015_16_1_a12,
     author = {Z. Kh. Rakhmonov and N. N. Nazrubloev and A. O. Rakhimov},
     title = {Short {Weyl} sums and their applications},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {232--247},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a12/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
AU  - N. N. Nazrubloev
AU  - A. O. Rakhimov
TI  - Short Weyl sums and their applications
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 232
EP  - 247
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a12/
LA  - ru
ID  - CHEB_2015_16_1_a12
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%A N. N. Nazrubloev
%A A. O. Rakhimov
%T Short Weyl sums and their applications
%J Čebyševskij sbornik
%D 2015
%P 232-247
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a12/
%G ru
%F CHEB_2015_16_1_a12
Z. Kh. Rakhmonov; N. N. Nazrubloev; A. O. Rakhimov. Short Weyl sums and their applications. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 232-247. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a12/

[1] Vaughan R. C., “Some remarks in Weyl sums”, Topics in classical number theory (Budapest, 1981), Colloquia Mathematica Societatis Janos Bolyai, 34, North Holland, 1984, 1585–1602

[2] Hua Loo-Keng, Die Abschätzung von Exponentialsummen und Ihre Anwendungen in der Zahlentheorie, Teubner, Leipzig, 1959

[3] Vaughan R. C., “On Waring's problem for cubes”, J. Reine Angew. Math., 365 (1986), 122–170

[4] Rakhmonov Z. Kh., Shokamolova J. A., “Short quadratic Weil's exponential sums”, Izvestiya Akademii nauk Respubliki Tajikistan. Otdelenie fiziko-matematicheskikh, himicheskikh, geologicheskikh i tekhnicheskikh nauk, 2009, no. 2(135), 7–18

[5] Rakhmonov Z. Kh., Mirzoabdugafurov K. I., “About the estimations of short cube Weyl sums”, Doklady Akademii nauk Respubliki Tajikistan, 51:1 (2008), 5–15

[6] Rakhmonov Z. Kh., Azamov A. Z., Mirzoabdugafurov K. I., “An estimate short exponential Weyl's sums fourth degree”, Doklady Akademii nauk Respubliki Tajikistan, 53:10 (2010), 737–744

[7] Rakhmonov Z. Kh., “The Estermann cubic problem with almost equal summand”, Mathematical Notes, 95:3–4 (2014), 407–417 | DOI

[8] Rakhmonov Z. Kh., Mirzoabdugafurov K. I., “Waring's problem for cubes with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, 51:2 (2008), 83–86

[9] Rakhmonov Z. Kh., Azamov A. Z., “An asymptotic formula in Waring's problem for fourth powers with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, 54:3 (2011), 34–42

[10] Rakhmonov Z. Kh., Ozodbekova N. B., “An estimate short exponential Weyl's sums”, Doklady Akademii nauk Respubliki Tajikistan, 54:4 (2011), 257–264

[11] Rakhmonov Z. Kh., “Short Weyl exponential sums”, Uchenye zapiski Orlovskogo gosudarstvennogo universiteta. Seriya estestvennie, tekhicheskie, meditsinskie nauki, 2013, no. 6(2), 194–203

[12] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric sums in number theory and analysis, Walter de Gruyter, Berlin–New-York, 2004, 554 pp.

[13] Nazrubloev N. N., “Mean value of the short Weyl fifth degree exponential sums”, Doklady Akademii nauk Respubliki Tajikistan, 57:7 (2014), 531–537

[14] Nazrubloev N. N., “Estimate of short Weyl sums of fifth degree on minor arcs”, Doklady Akademii nauk Respubliki Tajikistan, 57:9 (2014), 710–716

[15] Karatsuba A. A., Korolev M. A., “A theorem on the approximation of a trigonometric sum by a shorter one”, Izvestiya: Mathematics, 71:2 (2007), 341–370 | DOI | DOI

[16] Whittaker E. F., Watson G. N., A course of modern analysis: an introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge University Press, 1927

[17] Vaughan R. C., The Hardy–Littlewood method, Cambridge Tracts in Mathematics, 80, Cambridge University Press, Cambridge, 1981