Short Weyl sums and their applications
Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 232-247
Voir la notice de l'article provenant de la source Math-Net.Ru
We shall study the behavior of short Weyl sums of the form
$$
T(\alpha ,x,y)=\sum_{x-y\leq x}e(\alpha m^n)
$$
on major arcs and obtain an asymptotic formula for the number of representations of a sufficiently large positive integer $N$
as a sum of 33 fifth powers of positive integers $x_i$, that satisfy $ \left|x_i-\left(\dfrac{N}{33}\right)^{\frac 15}\right|\le H$, $H\ge N^{\frac 15-\frac{1}{340}+\varepsilon}$.
Bibliography: 17 titles.
Keywords:
Short Weyl sums, Almost equal summands, Circle metods, Waring's problem.
@article{CHEB_2015_16_1_a12,
author = {Z. Kh. Rakhmonov and N. N. Nazrubloev and A. O. Rakhimov},
title = {Short {Weyl} sums and their applications},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {232--247},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a12/}
}
Z. Kh. Rakhmonov; N. N. Nazrubloev; A. O. Rakhimov. Short Weyl sums and their applications. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 232-247. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a12/