Short Weyl sums and their applications
Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 232-247

Voir la notice de l'article provenant de la source Math-Net.Ru

We shall study the behavior of short Weyl sums of the form $$ T(\alpha ,x,y)=\sum_{x-y\leq x}e(\alpha m^n) $$ on major arcs and obtain an asymptotic formula for the number of representations of a sufficiently large positive integer $N$ as a sum of 33 fifth powers of positive integers $x_i$, that satisfy $ \left|x_i-\left(\dfrac{N}{33}\right)^{\frac 15}\right|\le H$, $H\ge N^{\frac 15-\frac{1}{340}+\varepsilon}$. Bibliography: 17 titles.
Keywords: Short Weyl sums, Almost equal summands, Circle metods, Waring's problem.
@article{CHEB_2015_16_1_a12,
     author = {Z. Kh. Rakhmonov and N. N. Nazrubloev and A. O. Rakhimov},
     title = {Short {Weyl} sums and their applications},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {232--247},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a12/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
AU  - N. N. Nazrubloev
AU  - A. O. Rakhimov
TI  - Short Weyl sums and their applications
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 232
EP  - 247
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a12/
LA  - ru
ID  - CHEB_2015_16_1_a12
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%A N. N. Nazrubloev
%A A. O. Rakhimov
%T Short Weyl sums and their applications
%J Čebyševskij sbornik
%D 2015
%P 232-247
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a12/
%G ru
%F CHEB_2015_16_1_a12
Z. Kh. Rakhmonov; N. N. Nazrubloev; A. O. Rakhimov. Short Weyl sums and their applications. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 232-247. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a12/