Vienna talk: on the number of zeros of the Riemann zeta function in short intervals of the critical line
Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 19-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The invited talk presented at the seminar of Prof. P. M. Gruber at the Chair of Mathematical Analysis of the Department of Mathematics of Vienna University of Technology at the June 13, 1994. Bibliography: 13 titles.
Keywords: Riemann Zeta Function, the Riemann hypothesis (RH), the Selberg hypothesis (SH).
@article{CHEB_2015_16_1_a1,
     author = {A. A. Karatsuba},
     title = {Vienna talk: on the number of zeros of the {Riemann} zeta function in short intervals of the critical line},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a1/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - Vienna talk: on the number of zeros of the Riemann zeta function in short intervals of the critical line
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 19
EP  - 31
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a1/
LA  - ru
ID  - CHEB_2015_16_1_a1
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T Vienna talk: on the number of zeros of the Riemann zeta function in short intervals of the critical line
%J Čebyševskij sbornik
%D 2015
%P 19-31
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a1/
%G ru
%F CHEB_2015_16_1_a1
A. A. Karatsuba. Vienna talk: on the number of zeros of the Riemann zeta function in short intervals of the critical line. Čebyševskij sbornik, Tome 16 (2015) no. 1, pp. 19-31. http://geodesic.mathdoc.fr/item/CHEB_2015_16_1_a1/

[1] Selberg A., “On the zeros of Riemann's zeta-function”, Skr. Norske Vid. Akad. Oslo, 1942, no. 10, 1–59

[2] Karatsuba A. A., “On the zeros of the function $\zeta(s)$ on short intervals of the critical line”, Math. USSR Izv., 24 (1985), 523–537 | DOI

[3] Karatsuba A. A., “The distribution of zeros of the function $\zeta\left(\frac 12+it\right)$”, Math. USSR Izv., 25 (1985), 519–529 | DOI

[4] Karatsuba A. A., “On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line”, Russ. Acad. Sci., Izv. Math., 40:2 (1993), 353–376

[5] Hardy G. H., Littlewood J. E., “The zeros of Riemann's zeta-function on the critical line”, Mathematische Zeitschrift, 10:3–4 (1921), 283–317 | DOI

[6] Davenport H., Heilbronn H., “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185 ; 307–312 | DOI

[7] Voronin S. M., “The zeros of zeta-functions of quadratic forms”, Proc. Steklov Inst. Math., 142 (1979), 143–155

[8] Voronin S. M., “On the zeros of some Dirichlet series lying on the critical line”, Math. USSR-Izv., 16:1 (1981), 55–82 | DOI

[9] Hejhal D. A., “Zeros of Epstein zeta functions and supercomputers”, Proceedings of the International Congress of Mathematicians (Berkeley, 1986), 1362–1384

[10] Bombieri E., Hejhal D. A., “Sur les zéros des fonctions zéta d'Epstein”, Comptes Rendus Acad. Sci. Paris, 304 (1987), 213–217

[11] Selberg A., “Old and new conjectures and results about a class of Dirichlet series”, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno, 1992, 367–385

[12] Karatsuba A. A., “On the zeros of the Davenport–Heilbronn function lying on the critical line”, Math. USSR Izv., 36:2 (1991), 311–324 | DOI

[13] Karatsuba A. A., “On the zeros of arithmetic Dirichlet series without Euler product”, Russ. Acad. Sci., Izv. Math., 43:2 (1994), 193–203