On the periodic zeta-function
Čebyševskij sbornik, Tome 15 (2014) no. 4, pp. 139-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an universality theorem for the periodic zeta-function which is defined by a Dirichlet series with periodic coefficients satisfying a certain dependence condition. This simplifies the problem and allows to elucidate the universality of the periodic zeta-function.
Keywords: analytic function, Dirichlet series, periodic zeta-function, universality.
@article{CHEB_2014_15_4_a4,
     author = {M. Stoncelis and D. \v{S}iau\v{c}i\={u}nas},
     title = {On the periodic zeta-function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {139--147},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_4_a4/}
}
TY  - JOUR
AU  - M. Stoncelis
AU  - D. Šiaučiūnas
TI  - On the periodic zeta-function
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 139
EP  - 147
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_4_a4/
LA  - en
ID  - CHEB_2014_15_4_a4
ER  - 
%0 Journal Article
%A M. Stoncelis
%A D. Šiaučiūnas
%T On the periodic zeta-function
%J Čebyševskij sbornik
%D 2014
%P 139-147
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_4_a4/
%G en
%F CHEB_2014_15_4_a4
M. Stoncelis; D. Šiaučiūnas. On the periodic zeta-function. Čebyševskij sbornik, Tome 15 (2014) no. 4, pp. 139-147. http://geodesic.mathdoc.fr/item/CHEB_2014_15_4_a4/

[1] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981

[2] Bagchi B., “A joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1982), 319–334 | DOI

[3] Gonek S. M., Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979

[4] Karatsuba A. A., Voronin S. M., The Riemann-Zeta Function, de Gruyter, New York, 1992

[5] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996

[6] Laurinčikas A., “On joint universality of Dirichlet $L$-functions”, Chebyshevskii Sb., 12:1 (2011), 129–139

[7] Matsumoto K., “A survey on the theory of universality for zeta and $L$-functions”, Proceedings of the 7th China-Japan Number Theory Conference (to appear)

[8] Mergelyan S. N., “Uniform approximations to functions of a complex variable”, Usp. Matem. Nauk, 7 (1952), 31–122 (in Russian)

[9] Steuding J., Value-Distribution of $L$-functions, Lecture Notes in Math., 1877, Springer Verlag, Berlin–Heidelberg, 2007

[10] Voronin S. M., “The functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503

[11] Math. USSR Izv., 9 (1975), 443–453 | DOI

[12] Walsh J. L., Interpolation and Approximation by Rational Functions on the Complex Domain, Amer. Math. Soc. Colloq. Publ., 20, American Mathematical Society, Providence, 1960