Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2014_15_4_a4, author = {M. Stoncelis and D. \v{S}iau\v{c}i\={u}nas}, title = {On the periodic zeta-function}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {139--147}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_4_a4/} }
M. Stoncelis; D. Šiaučiūnas. On the periodic zeta-function. Čebyševskij sbornik, Tome 15 (2014) no. 4, pp. 139-147. http://geodesic.mathdoc.fr/item/CHEB_2014_15_4_a4/
[1] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981
[2] Bagchi B., “A joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1982), 319–334 | DOI
[3] Gonek S. M., Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979
[4] Karatsuba A. A., Voronin S. M., The Riemann-Zeta Function, de Gruyter, New York, 1992
[5] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996
[6] Laurinčikas A., “On joint universality of Dirichlet $L$-functions”, Chebyshevskii Sb., 12:1 (2011), 129–139
[7] Matsumoto K., “A survey on the theory of universality for zeta and $L$-functions”, Proceedings of the 7th China-Japan Number Theory Conference (to appear)
[8] Mergelyan S. N., “Uniform approximations to functions of a complex variable”, Usp. Matem. Nauk, 7 (1952), 31–122 (in Russian)
[9] Steuding J., Value-Distribution of $L$-functions, Lecture Notes in Math., 1877, Springer Verlag, Berlin–Heidelberg, 2007
[10] Voronin S. M., “The functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503
[11] Math. USSR Izv., 9 (1975), 443–453 | DOI
[12] Walsh J. L., Interpolation and Approximation by Rational Functions on the Complex Domain, Amer. Math. Soc. Colloq. Publ., 20, American Mathematical Society, Providence, 1960