On the periodic zeta-function
Čebyševskij sbornik, Tome 15 (2014) no. 4, pp. 139-147
Voir la notice de l'article provenant de la source Math-Net.Ru
We present an universality theorem for the periodic zeta-function which is defined by a Dirichlet series with periodic coefficients satisfying a certain dependence condition. This simplifies the problem and allows to elucidate the universality of the periodic zeta-function.
Keywords:
analytic function, Dirichlet series, periodic zeta-function, universality.
@article{CHEB_2014_15_4_a4,
author = {M. Stoncelis and D. \v{S}iau\v{c}i\={u}nas},
title = {On the periodic zeta-function},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {139--147},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_4_a4/}
}
M. Stoncelis; D. Šiaučiūnas. On the periodic zeta-function. Čebyševskij sbornik, Tome 15 (2014) no. 4, pp. 139-147. http://geodesic.mathdoc.fr/item/CHEB_2014_15_4_a4/