On the periodic zeta-function
Čebyševskij sbornik, Tome 15 (2014) no. 4, pp. 139-147

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an universality theorem for the periodic zeta-function which is defined by a Dirichlet series with periodic coefficients satisfying a certain dependence condition. This simplifies the problem and allows to elucidate the universality of the periodic zeta-function.
Keywords: analytic function, Dirichlet series, periodic zeta-function, universality.
@article{CHEB_2014_15_4_a4,
     author = {M. Stoncelis and D. \v{S}iau\v{c}i\={u}nas},
     title = {On the periodic zeta-function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {139--147},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_4_a4/}
}
TY  - JOUR
AU  - M. Stoncelis
AU  - D. Šiaučiūnas
TI  - On the periodic zeta-function
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 139
EP  - 147
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_4_a4/
LA  - en
ID  - CHEB_2014_15_4_a4
ER  - 
%0 Journal Article
%A M. Stoncelis
%A D. Šiaučiūnas
%T On the periodic zeta-function
%J Čebyševskij sbornik
%D 2014
%P 139-147
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_4_a4/
%G en
%F CHEB_2014_15_4_a4
M. Stoncelis; D. Šiaučiūnas. On the periodic zeta-function. Čebyševskij sbornik, Tome 15 (2014) no. 4, pp. 139-147. http://geodesic.mathdoc.fr/item/CHEB_2014_15_4_a4/