Units and linear recurrent sequences
Čebyševskij sbornik, Tome 15 (2014) no. 3, pp. 4-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author suggests the famous description of cubic field units of negative discriminant with recurrent sequences which are analogous to Fibonacci numbers. It runs to derived algebraic field and it is interpreted as applied to Diophantine equations. Bibliography: 2 titles.
Keywords: field, sequence, unit, recursion, Fibonacci, equation, Diophantine.
@article{CHEB_2014_15_3_a0,
     author = {E. T. Avanesov and V. A. Gusev},
     title = {Units and linear recurrent sequences},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {4--11},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a0/}
}
TY  - JOUR
AU  - E. T. Avanesov
AU  - V. A. Gusev
TI  - Units and linear recurrent sequences
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 4
EP  - 11
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a0/
LA  - ru
ID  - CHEB_2014_15_3_a0
ER  - 
%0 Journal Article
%A E. T. Avanesov
%A V. A. Gusev
%T Units and linear recurrent sequences
%J Čebyševskij sbornik
%D 2014
%P 4-11
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a0/
%G ru
%F CHEB_2014_15_3_a0
E. T. Avanesov; V. A. Gusev. Units and linear recurrent sequences. Čebyševskij sbornik, Tome 15 (2014) no. 3, pp. 4-11. http://geodesic.mathdoc.fr/item/CHEB_2014_15_3_a0/

[1] Kiss P., “On some properties of linear recurrents”, Publ. math., 30 (1983), 273–281 | MR | Zbl

[2] Vereschagin N. K., “O nulyakh lineinykh rekurrentnykh posledovatelnostei”, DAN SSSR, 1984, no. 5, 1036–1039