The problem of the conjugation of words in a wood piece of free groups with cyclic amalgamation
Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 43-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work positively with the problem of the conjugation words in a tree product of free groups associated with cyclic subgroups. This work is a generalization of the well-known results of Lipschutz S. for a free product of two free groups with cyclic amalgamation.When solving the main problem it is proved the solvability of the problem of intersection of finite generated subgroup of this group with a cyclic subgroup of the factor group and the problem of the intersection of the co-set of finite generated by subgroup with a cyclic subgroup of the factor group.
Keywords: group, subgroup, conjugacy problem, amalgamated free product.
@article{CHEB_2014_15_1_a4,
     author = {V. N. Bezverkhniy and E. S. Logacheva},
     title = {The problem of the conjugation of words in a wood piece of free groups with cyclic amalgamation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a4/}
}
TY  - JOUR
AU  - V. N. Bezverkhniy
AU  - E. S. Logacheva
TI  - The problem of the conjugation of words in a wood piece of free groups with cyclic amalgamation
JO  - Čebyševskij sbornik
PY  - 2014
SP  - 43
EP  - 54
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a4/
LA  - ru
ID  - CHEB_2014_15_1_a4
ER  - 
%0 Journal Article
%A V. N. Bezverkhniy
%A E. S. Logacheva
%T The problem of the conjugation of words in a wood piece of free groups with cyclic amalgamation
%J Čebyševskij sbornik
%D 2014
%P 43-54
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a4/
%G ru
%F CHEB_2014_15_1_a4
V. N. Bezverkhniy; E. S. Logacheva. The problem of the conjugation of words in a wood piece of free groups with cyclic amalgamation. Čebyševskij sbornik, Tome 15 (2014) no. 1, pp. 43-54. http://geodesic.mathdoc.fr/item/CHEB_2014_15_1_a4/

[1] Bezverkhnii V. N., “Reshenie problemy sopryazhennosti podgrupp v odnom klasse HNN-grupp”, Algoritmicheskie problemy teorii grupp i polugrupp i ikh prilozhenie, mezhvuz. sb., TGPI im. L. N. Tolstogo, Tula, 1983, 50–80

[2] Bezverkhnii V. N., “Reshenie problemy vkhozhdeniya dlya odnogo klassa grupp”, Voprosy teorii grupp i polugrupp, mezhvuz. sb., TGPI im. L. N. Tolstogo, Tula, 1972, 3–86

[3] Bezverkhnii V. N., “Reshenie problemy sopryazhennosti podgrupp dlya odnogo klassa grupp. I–II”, mezhvuzovskii sbornik, Sovremennaya algebra, 6, L., 1977, 16–32 | MR

[4] Bezverkhnii V. N., “O peresechenii konechno-porozhdennykh podgrupp svobodnoi gruppy”, Sbornik nauchnykh trudov kafedry vysshei matematiki, 2, Tulskii politekhnicheskii institut, Tula, 1974, 51–56

[5] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[6] Lipshutz S., “The congugacy problem and cyclic amalgamations”, Bull. Amer. Math. Soc., 1973, 114–116