On the first return times for toric rotations
Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 127-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some examples of domains such that first return time function for two-dimensional torus shift has at most three values are constructed. Some applications to bounded remainder sets problem are obtained.
Keywords: bounded remainder sets, first return time.
@article{CHEB_2013_14_4_a8,
     author = {D. V. Kuznetsova and A. V. Shutov},
     title = {On the first return times for toric rotations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {127--130},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a8/}
}
TY  - JOUR
AU  - D. V. Kuznetsova
AU  - A. V. Shutov
TI  - On the first return times for toric rotations
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 127
EP  - 130
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a8/
LA  - ru
ID  - CHEB_2013_14_4_a8
ER  - 
%0 Journal Article
%A D. V. Kuznetsova
%A A. V. Shutov
%T On the first return times for toric rotations
%J Čebyševskij sbornik
%D 2013
%P 127-130
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a8/
%G ru
%F CHEB_2013_14_4_a8
D. V. Kuznetsova; A. V. Shutov. On the first return times for toric rotations. Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 127-130. http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a8/

[1] Floreik K., “Une remarque sur la repartition des nombres $m\xi \mod 1$”, Coll. Math. Wroclaw, 2 (1951), 323–324

[2] Shutov A. V., “Derivatives of Circle Rotations and the Similarity of Orbits”, Journal of Mathematical Sciences, 133, March (2006), 1765–1771 | DOI | MR