Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2013_14_4_a7, author = {E. I. Kovalevskaya and O. V. Rykova}, title = {The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {119--126}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a7/} }
TY - JOUR AU - E. I. Kovalevskaya AU - O. V. Rykova TI - The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces JO - Čebyševskij sbornik PY - 2013 SP - 119 EP - 126 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a7/ LA - ru ID - CHEB_2013_14_4_a7 ER -
%0 Journal Article %A E. I. Kovalevskaya %A O. V. Rykova %T The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces %J Čebyševskij sbornik %D 2013 %P 119-126 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a7/ %G ru %F CHEB_2013_14_4_a7
E. I. Kovalevskaya; O. V. Rykova. The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces. Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 119-126. http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a7/
[1] Beresnevich V., Dickinson D., Velani S., “Diophantine approximation on planar curves and the distribution of rational points”, Ann. of Math. (2), 166:2 (2007), 367–426 (With an Appendix II by Vaughan R. C.) | DOI | MR | Zbl
[2] Beresnevich V., “Rational points near manifolds and metric Diophantine approximation”, Ann. of Math., 175 (2012), 187–235 | DOI | MR | Zbl
[3] Sprindžuk V. G., “Proof of Mahler conjecture on measure of the $S$-numbers set”, Izv. AN SSSR. Ser. math., 29:2 (1965), 379–436 | MR | Zbl
[4] Bernik V. I., “Simultaneous approximation of zero by integer polynomials”, Izv. AN SSSR. Ser. math., 44:1 (1980), 24–45 | MR
[5] Budarina N., Dickinson D., Bernik V., “Simultaneous Diophantine approximation in the real, complex and $p$-adic fields”, Math. Proc. Cambridge Phil. Soc., 149:2 (2010), 193–216 | DOI | MR | Zbl
[6] Bernik V. I., Kalosha N. I., “Approximation of zero by integer polynomials in space $\mathbb{R}\times\mathbb{C}\times\mathbb{Q}_p$”, Proc. NA Sci. Belarus. Phis. and Math. Ser., 2004, no. 1, 121–123 | MR
[7] Kovalevskaya E., “Diophantine approximation in $\mathbb{C}\times\mathbb{Q}_p$”, Analytic and Probab. Methods in Number Theory, Proceedings of the Fourth Intern. Conf. in Honour of J. Kubilius (Palanga, Lithuania, 25–29 Sept. 2006), TEV, Vilnius, 2007, 56–71 | MR | Zbl
[8] Z̆eludevich F., “Simultane diophantishe Approximationen abhängiger Grössen in mehreren Metriken”, Acta Arithm., 46 (1986), 285–296 | MR