The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces
Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 119-126

Voir la notice de l'article provenant de la source Math-Net.Ru

The lower estimate for number of vectors with real algebraic coordinates near smooth surfaces is obtained. We use a new form of the essential and inessential domains method.
Keywords: metric theory of Diophantine approximation, integer polynomials, distribution of the real algebraic numbers.
@article{CHEB_2013_14_4_a7,
     author = {E. I. Kovalevskaya and O. V. Rykova},
     title = {The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {119--126},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a7/}
}
TY  - JOUR
AU  - E. I. Kovalevskaya
AU  - O. V. Rykova
TI  - The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 119
EP  - 126
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a7/
LA  - ru
ID  - CHEB_2013_14_4_a7
ER  - 
%0 Journal Article
%A E. I. Kovalevskaya
%A O. V. Rykova
%T The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces
%J Čebyševskij sbornik
%D 2013
%P 119-126
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a7/
%G ru
%F CHEB_2013_14_4_a7
E. I. Kovalevskaya; O. V. Rykova. The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces. Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 119-126. http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a7/