The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces
Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 119-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The lower estimate for number of vectors with real algebraic coordinates near smooth surfaces is obtained. We use a new form of the essential and inessential domains method.
Keywords: metric theory of Diophantine approximation, integer polynomials, distribution of the real algebraic numbers.
@article{CHEB_2013_14_4_a7,
     author = {E. I. Kovalevskaya and O. V. Rykova},
     title = {The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {119--126},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a7/}
}
TY  - JOUR
AU  - E. I. Kovalevskaya
AU  - O. V. Rykova
TI  - The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 119
EP  - 126
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a7/
LA  - ru
ID  - CHEB_2013_14_4_a7
ER  - 
%0 Journal Article
%A E. I. Kovalevskaya
%A O. V. Rykova
%T The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces
%J Čebyševskij sbornik
%D 2013
%P 119-126
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a7/
%G ru
%F CHEB_2013_14_4_a7
E. I. Kovalevskaya; O. V. Rykova. The development of the essential and inessential domains method for the calculation of vectors with real algebraic coordinates near smooth surfaces. Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 119-126. http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a7/

[1] Beresnevich V., Dickinson D., Velani S., “Diophantine approximation on planar curves and the distribution of rational points”, Ann. of Math. (2), 166:2 (2007), 367–426 (With an Appendix II by Vaughan R. C.) | DOI | MR | Zbl

[2] Beresnevich V., “Rational points near manifolds and metric Diophantine approximation”, Ann. of Math., 175 (2012), 187–235 | DOI | MR | Zbl

[3] Sprindžuk V. G., “Proof of Mahler conjecture on measure of the $S$-numbers set”, Izv. AN SSSR. Ser. math., 29:2 (1965), 379–436 | MR | Zbl

[4] Bernik V. I., “Simultaneous approximation of zero by integer polynomials”, Izv. AN SSSR. Ser. math., 44:1 (1980), 24–45 | MR

[5] Budarina N., Dickinson D., Bernik V., “Simultaneous Diophantine approximation in the real, complex and $p$-adic fields”, Math. Proc. Cambridge Phil. Soc., 149:2 (2010), 193–216 | DOI | MR | Zbl

[6] Bernik V. I., Kalosha N. I., “Approximation of zero by integer polynomials in space $\mathbb{R}\times\mathbb{C}\times\mathbb{Q}_p$”, Proc. NA Sci. Belarus. Phis. and Math. Ser., 2004, no. 1, 121–123 | MR

[7] Kovalevskaya E., “Diophantine approximation in $\mathbb{C}\times\mathbb{Q}_p$”, Analytic and Probab. Methods in Number Theory, Proceedings of the Fourth Intern. Conf. in Honour of J. Kubilius (Palanga, Lithuania, 25–29 Sept. 2006), TEV, Vilnius, 2007, 56–71 | MR | Zbl

[8] Z̆eludevich F., “Simultane diophantishe Approximationen abhängiger Grössen in mehreren Metriken”, Acta Arithm., 46 (1986), 285–296 | MR