Upper bound for quadratic mean of special rational exponential sums and their applications
Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 26-37
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we obtain some arithmetic properties of generalized Fibonacci sequence and consider their applications.
Keywords:
Generalized Fibonacci, exponential sums, set's density.
@article{CHEB_2013_14_4_a2,
author = {A. N. Vassilyev},
title = {Upper bound for quadratic mean of special rational exponential sums and their applications},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {26--37},
year = {2013},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a2/}
}
A. N. Vassilyev. Upper bound for quadratic mean of special rational exponential sums and their applications. Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 26-37. http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a2/
[1] Vorobev N. N., Chisla Fibonachchi, Nauka, M., 1978, 144 pp. | MR
[2] Gashkov S. B., Chubarikov V. N., Arifmetika. Algoritmy. Slozhnost vychislenii, Drofa, M., 2005, 319 pp.
[3] Romanoff N. P. (Romanov N. P.), “Uber einige Satze der additiven Zahlentheorie”, Math. Ann., 109 (1934), 668–678 | DOI | MR | Zbl
[4] Erdos P., “On some problems of Bellman and a theorem of Romanoff”, J. Chinese Math. Soc., 1 (1951), 409–421 | MR
[5] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967, 511 pp. | MR
[6] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, Vysshaya shkola, M., 1999, 694 pp.