Periodicity in abelian $n$-ary groups
Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 205-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every periodic abelian $ n $-ary group is isomorphic to the direct product of primary abelian $n$-ary groups belonging to different primes.
Keywords: abelian $n$-ary group, periodicity, direct.
@article{CHEB_2013_14_4_a18,
     author = {N. A. Shchuchkin},
     title = {Periodicity in abelian $n$-ary groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {205--212},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a18/}
}
TY  - JOUR
AU  - N. A. Shchuchkin
TI  - Periodicity in abelian $n$-ary groups
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 205
EP  - 212
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a18/
LA  - ru
ID  - CHEB_2013_14_4_a18
ER  - 
%0 Journal Article
%A N. A. Shchuchkin
%T Periodicity in abelian $n$-ary groups
%J Čebyševskij sbornik
%D 2013
%P 205-212
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a18/
%G ru
%F CHEB_2013_14_4_a18
N. A. Shchuchkin. Periodicity in abelian $n$-ary groups. Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 205-212. http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a18/

[1] Shchuchkin N. A., “Periodicity in semiabelian $n$-ary groups”, Proceedings of Orel State University, 6:2 (2012), 254–259

[2] Gleichgewicht B., Glasek K., “Remarks on $n$-groups as abstract algebras”, Coll. Math., 17 (1967), 209–219 | MR | Zbl

[3] Dudek W. A., “Remarks on $n$-groups”, Demonstratio Math., 13 (1980), 165–181 | MR | Zbl

[4] Timm J., Kommutative $n$-Gruppen, Diss., Hamburg, 1967, 156 pp.

[5] Rusakov S. A., Algebraic $n$-ary system, Science and Technology, Minsk, 1992, 262 pp.

[6] Gal'mak A. M., $ n $-ary groups, v. I, GSU F. Skoryna, Gomel, 2003, 196 pp.

[7] Dudek I. M., Dudek W. A., “On skew elements in $n$-groups”, Demonstratio Math., XIV:4 (1981), 827–833 | MR | Zbl

[8] Post E. L., “Poluadic groups”, Trans. Amer. Math. Soc., 48 (1940), 208–350 | DOI | MR

[9] Gal'mak A. M., Congruence polyadic groups, Belarusian Science, Minsk, 1999, 180 pp.