On endomorphism semigroup of connected monounary algebras with one-element cycle
Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 188-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the inverse problem. Our goal is to describe classes of semigroups which is isomorphic to the endomorphism semigroup of some monounary algebra. We describe the endomorphism semigroup for certain class of monounary algebras with an one-element cycle.
Keywords: unar, endomorphism, wreath product of semigroups.
@article{CHEB_2013_14_4_a16,
     author = {S. V. Sirovatskaya},
     title = {On endomorphism semigroup of connected monounary algebras with one-element cycle},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {188--195},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a16/}
}
TY  - JOUR
AU  - S. V. Sirovatskaya
TI  - On endomorphism semigroup of connected monounary algebras with one-element cycle
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 188
EP  - 195
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a16/
LA  - ru
ID  - CHEB_2013_14_4_a16
ER  - 
%0 Journal Article
%A S. V. Sirovatskaya
%T On endomorphism semigroup of connected monounary algebras with one-element cycle
%J Čebyševskij sbornik
%D 2013
%P 188-195
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a16/
%G ru
%F CHEB_2013_14_4_a16
S. V. Sirovatskaya. On endomorphism semigroup of connected monounary algebras with one-element cycle. Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 188-195. http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a16/

[1] Kartashov V. K., “Quasivarieties of unars”, Math. Notes, 27 (1980), 5–12 | DOI | MR | Zbl | Zbl

[2] Varlet J. C., “Endomorphisms and fully invariant congruences in unary algebras $\left\langle A, \Gamma \right\rangle$”, Bull. Soc. Roy. Sci. Liege, 39 (1970), 575–589 | MR | Zbl

[3] Artamonov V. A., Salii V. N., Skornyakov L. A. et al., General Algebra, v. 2, Nauka, M., 1991 (in Russian)

[4] Knauer U., Mikhalev A., “Endomorphism monoids of free acts and O-wreath products of monoids. I: Annihilator properties”, Semigroup Forum, 19 (1980), 177–187 | DOI | MR | Zbl