Horn formuls in pierce chains of semirings
Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 159-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes construction of a pierce chain of congruences of a semiring — analogue of pierce chains of ideals of a ring, necessary definitions are introduced: a ring of central supplemented idempotents, a congruence of Peirce, a pierce sheaf of semirings, a pierce representation of semirings, a pierce chain of congruences, a horn formula. The basic result of paper is the theorem 1 about equivalence of realizability of horn formulas without negation on a semiring and its factors, additional result is an application of the theorem 1 for the proof of "transposition" of properties of a semiring of a Bezout on its factors and is inverse.
Keywords: a semiring, a pierce representation of semirings, a central supplemented idempotent of a semiring, a pierce chain of congruences of a semiring, a horn formula without negation, a semiring of a Bezout.
@article{CHEB_2013_14_4_a13,
     author = {R. V. Markov},
     title = {Horn formuls in pierce chains of semirings},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {159--166},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a13/}
}
TY  - JOUR
AU  - R. V. Markov
TI  - Horn formuls in pierce chains of semirings
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 159
EP  - 166
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a13/
LA  - ru
ID  - CHEB_2013_14_4_a13
ER  - 
%0 Journal Article
%A R. V. Markov
%T Horn formuls in pierce chains of semirings
%J Čebyševskij sbornik
%D 2013
%P 159-166
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a13/
%G ru
%F CHEB_2013_14_4_a13
R. V. Markov. Horn formuls in pierce chains of semirings. Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 159-166. http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a13/

[1] Vechtomov E. M., Funktsionalnye predstavleniya kolets, MPGU, M., 1993

[2] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970, 392 pp.

[3] Markov R. V., “Pirsovskie tsepi polukolets”, Vestnik Syktyvkarskogo universiteta, 2013, no. 16

[4] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[5] Chermnykh V. V., “Puchkovye predstavleniya polukolets”, Uspekhi mat. nauk, 48:5 (1993), 185–186

[6] Chermnykh V. V., Funktsionalnye predstavleniya polukolets, Izd-vo VyatGGU, Kirov, 2010

[7] Burgess W. D., Stephenson W., “Rings all of whose Pierce stalks are local”, Canad. Math. Bull., 22:2 (1979), 159–164 | DOI | MR | Zbl

[8] Pierce R. S., “Modules over commutative regular rings”, Mem. Amer. Math. Soc., 70, 1967, 1–112 | MR