PODPS: architecture and the steps for creating
Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 13-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Innovative processes in education, transition to the new state standards of higher education and multi-level system of higher education organization open up new opportunities for the educational community to improve the education system, and in particular, mathematical education. New educational standards provide greater freedom of choice, both for students and for the university. Elective modules which selects the student provide an informed choice on the part of students and a broad spectrum of opportunities from the university. The problem of selecting a specific elective module is quite complicated. Raises the question of the formation of long-term informed choice based on the subsequent post-graduate study and research activities. For serious informed choice requires sufficient awareness, availability of development prospects and the ability to implement intellectual relay. Informatization of society opened opportunities creating problem-oriented educational information systems, to provide necessary conditions for the implementation of such a choice student and his subsequent promotion of successful in their individual educational path. Creating a modern problem-oriented information system involves the provision of necessary and convenient means for educational and, then, and scientific problems. In this paper provides an overview of the step of creation and development issues PODPS — Problem-Oriented Data-Processing System.
Keywords: Problem-Oriented Data-Processing System, information support of theoretical studies, implementation of numeric and symbolic algorithms.
@article{CHEB_2013_14_4_a1,
     author = {Y. A. Basalov and A. N. Basalova},
     title = {PODPS: architecture and the steps for creating},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {13--25},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a1/}
}
TY  - JOUR
AU  - Y. A. Basalov
AU  - A. N. Basalova
TI  - PODPS: architecture and the steps for creating
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 13
EP  - 25
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a1/
LA  - ru
ID  - CHEB_2013_14_4_a1
ER  - 
%0 Journal Article
%A Y. A. Basalov
%A A. N. Basalova
%T PODPS: architecture and the steps for creating
%J Čebyševskij sbornik
%D 2013
%P 13-25
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a1/
%G ru
%F CHEB_2013_14_4_a1
Y. A. Basalov; A. N. Basalova. PODPS: architecture and the steps for creating. Čebyševskij sbornik, Tome 14 (2013) no. 4, pp. 13-25. http://geodesic.mathdoc.fr/item/CHEB_2013_14_4_a1/

[1] Bocharova (Dobrovolskaya) L. P., “O granichnykh funktsiyakh nekotorykh klassov”, Naukoemkoe obrazovanie. Traditsii. Inovatsii. Perspektivy, sbornik mezhvuz. nauch. st., ANOVO «TINO», Tula, 2006, 198–202

[2] Bocharova (Dobrovolskaya) L. P., “Algoritmy poiska optimalnykh koeffitsientov”, Chebyshevskii sbornik, 8:1(21) (2007), 4–109 | MR

[3] Bocharova (Dobrovolskaya) L. P., Vankova V. S., Dobrovolskii N. M., “O vychislenii optimalnykh koeffitsientov”, Mat. zametki, 49:2 (1991), 23–28 | MR | Zbl

[4] Vankova V. S., Dobrovolskii N. M., Esayan A. R., O preobrazovanii mnogomernykh setok, Dep. v VINITI 22.01.91, No 447-91

[5] Vronskaya G. T., “O kvadratichnom otklonenii ploskikh setok Khemmersli”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 9:1 (2003), 23–62 | MR | Zbl

[6] Vronskaya G. T., Dobrovolskii N. M., “O dvumernykh setkakh Voronina”, Chebyshevskii sbornik, 5:1(9) (2004), 74–86 | MR | Zbl

[7] Vronskaya G. T., Dobrovolskii N. M., Rodionova O. V., “Sravneniya summy i proizvedeniya”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 8:1 (2002), 10–28 | Zbl

[8] Vronskaya G. T., Dobrovolskii N. N., Otkloneniya ploskikh setok, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2012, 193 pp.

[9] Vronskaya G. T., Rodionova O. V., Kvadratichnoe otklonenie ploskikh setok, Izd-vo TGPU im. L. N. Tolstogo, Tula, 2005

[10] Golovnev Yu. F., Dobrovolskii N. M., Nadezhdina E. E., “Raschet kulonovskikh i obmennykh integralov metodom optimalnykh koeffitsientov”, Izvestiya TulGU. Ser. Matematika. Mekhanika. Informatika, 9:2, Mekhanika (2003), 29–40 | Zbl

[11] Dobrovolskaya (Soboleva) V. N., “Nepolnye summy drobnykh dolei”, Chebyshevskii sbornik, 5:2(10) (2004), 43–48

[12] Dobrovolskaya (Soboleva) V. N., “Formula Pika i nepolnye summy drobnykh dolei”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 10:1 (2004), 5–11 | MR

[13] Dobrovolskaya (Soboleva) V. N., “Otklonenie ploskikh parallelepipedalnykh setok”, Chebyshevskii sbornik, 6:1(13) (2005), 87–97 | MR | Zbl

[14] Dobrovolskaya (Soboleva) V. N., “Elementarnyi metod drobnykh dolei Vinogradova–Korobova i otklonenie ploskikh setok Bakhvalova”, Chebyshevskii sbornik, 6:2(14) (2005), 138–144 | MR | Zbl

[15] Dobrovolskaya (Soboleva) V. N., Stolbova V. I., “Nepolnye stepennye summy drobnykh dolei”, Sovremennye problemy matematiki, mekhaniki, informatiki, tezisy dokladov Mezhdunarodnoi nauchnoi konferentsii, Izd-vo TulGU, Tula, 2005, 83–84 | MR

[16] Dobrovolskaya (Soboleva) V. N., Stolbova V. I., “Nepolnye stepennye summy drobnykh dolei”, Chebyshevskii sbornik, 6:4(16) (2005), 100–107 | MR

[17] Dobrovolskaya L. P., Dobrovolskii M. N., Dobrovolskii N. M., Dobrovolskii N. N., “Problemno orientirovannaya informatsionno vychislitelnaya sistema TMK (teoretiko-chislovoi metod Korobova)”, Rol universitetov v podderzhke gumanitarnykh nauchnykh issledovanii, materialy V Mezhdunar. nauch.-prakt. konf., V 2 t., Dop. tom, ed. O. G. Vronskii, Izd-vo TGPU im. L. N. Tolstogo, Tula, 2010, 16–28

[18] Dobrovolskaya L. P., Dobrovolskii M. N., Dobrovolskii N. M., Dobrovolskii N. N., Mnogomernye teoretiko-chislovye setki i reshetki i algoritmy poiska optimalnykh koeffitsientov, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2012, 284 pp.

[19] Dobrovolskaya L. P., Dobrovolskii N. M., Dobrovolskii N. N., Ogorodnichuk N. K., Rebrov E. D., Rebrova I. Yu., “Nekotorye voprosy teoretiko-chislovogo metoda v priblizhennom analize”, trudy X mezhdunarodnoi konferentsii, v. 2, Uchenye zapiski Orlovskogo gos. un-ta, 6, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, 2012, 90–98

[20] Dobrovolskaya L. P., Dobrovolskii M. N., Dobrovolskii N. M., Dobrovolskii N. N., “Giperbolicheskie dzeta-funktsii setok i reshetok i vychislenie optimalnykh koeffitsientov”, Chebyshevskii sbornik, 13:4(44) (2012), 4–107

[21] Dobrovolskii M. N., “Otsenki summ po giperbolicheskomu krestu”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 9:1 (2003), 82–90 | MR

[22] Dobrovolskii M. N., “Ob optimalnykh koeffitsientakh kombinirovannykh setok”, Chebyshevskii sbornik, 5:1(9) (2004), 95–121 | MR | Zbl

[23] Dobrovolskii M. N., “Funktsionalnoe uravnenie dlya giperbolicheskoi dzeta-funktsii tselochislennykh reshetok”, Doklady RAN, 412:3 (2007), 302–304

[24] Dobrovolskii M. N., “Funktsionalnoe uravnenie dlya giperbolicheskoi dzeta-funktsii tselochislennykh reshetok”, Vestn. Mosk. un-ta. Ser. 1, Matematika. Mekhanika, 2007, no. 5, 18–23 | MR

[25] Dobrovolskii M. N., “Ryady Dirikhle s periodicheskimi koeffitsientami i funktsionalnoe uravnenie dlya giperbolicheskoi dzeta-funktsii tselochislennykh reshetok”, Chebyshevskii sbornik, 3:2(4) (2006), 43–59 | MR

[26] Dobrovolskii M. N., “Kvazipolnye korotkie kubicheskie trigonometricheskie summy”, Chebyshevskii sbornik, 9:2(26) (2008), 43–59 | Zbl

[27] Dobrovolskii M. N., Dobrovolskii N. M., Kiseleva O. V., “O proizvedenii obobschennykh parallelepipedalnykh setok tselochislennykh reshetok”, Chebyshevskii sbornik, 3:2(4) (2002), 43–59 | MR

[28] Dobrovolskii N. M., “Effektivnoe dokazatelstvo teoremy Rota o kvadratichnom otklonenii”, UMN, 39:123 (1984), 155–156 | MR

[29] Dobrovolskii N. M., Otsenki otklonenii modifitsirovannykh setok Khemmersli–Rota, Dep. v VINITI 23.02.84, No 1365-84

[30] Dobrovolskii N. M., Otsenki otklonenii obobschennykh parallelepipedalnykh setok, Dep. v VINITI 24.08.84, No 6089-84

[31] Dobrovolskii N. M., Giperbolicheskaya dzeta-funktsiya reshetok, Dep. v VINITI 24.08.84, No 6090-84

[32] Dobrovolskii N. M., O kvadraturnykh formulakh na klassakh $E^\alpha_s(c)$ i $H^\alpha_s(c)$, Dep. v VINITI 24.08.84, No 6091-84

[33] Dobrovolskii N. M., “Srednie po orbitam mnogomernykh setok”, Mat. zametki, 58:1 (1995), 48–66 | MR | Zbl

[34] Dobrovolskii N. M., “Mnogomernye teoretiko-chislovye setki i reshetki i ikh prilozheniya k priblizhennomu analizu”, Sovremennye problemy teorii chisel i ee prilozheniya, IV Mezhdunar. konf., posvyaschennaya 180-letiyu P. L. Chebysheva i 110-letiyu I. M. Vinogradova (Tula, 10–15 sentyabrya, 2001), v. I, Aktualnye problemy, MGU, M., 2002, 54–80

[35] Dobrovolskii N. M., Mnogomernye teoretiko-chislovye setki i reshetki i ikh prilozheniya, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2005, 195 pp.

[36] Dobrovolskii N. M., Vankova V. S., “O regulyarnykh $P$-ichnykh setkakh”, Mat. zametki, 54:6 (1993), 22–32 | MR | Zbl

[37] Dobrovolskii N. M., Vankova V. S., “Srednie kvadratichnogo otkloneniya po orbitam mnogomernykh regulyarnykh setok”, Mat. zapiski, 2 (1996), 56–73

[38] Dobrovolskii N. M., Vankova V. S., Ob odnoi lemme A. O. Gelfonda, Dep. v VINITI 08.01.87, No 1467-B87

[39] Dobrovolskii N. M., Vankova V. S., Novye otsenki dlya modifitsirovannykh setok Khemmersli–Rota, Dep. v VINITI 29.08.90, No 4992-B90

[40] Dobrovolskii N. M., Vankova V. S., “Chislennyi eksperiment po primeneniyu parallelepipedalnykh setok”, Algoritmicheskie problemy teorii grupp i polugrupp, Tula, 1990, 153–155

[41] Dobrovolskii N. M., Vankova V. S., Kozlova S. L., Giperbolicheskaya dzeta-funktsiya algebraicheskikh reshetok, Dep. v VINITI 12.04.90, No 2327-B90

[42] Dobrovolskii N. M., Vankova V. S., Penton M. M., “Algoritm postroeniya optimalnykh modifitsirovannykh setok Khemmersli–Rota”, Sovremennye problemy informatiki, vychislitelnoi tekhniki i avtomatizatsii, tez. dokl. Vsesoyuz. konf. (Tula, 1989), 92–95

[43] Dobrovolskiy N. M., Dobrovolskaya L. P., Dobrovolskiy N. N., Ogorodnichuk N. K., Rebrov E. D., “Algorithms for computing optimal coefficients”, Computer Algebra and Information Technology, Book of abstracts of the International scientific conference (Odessa, August 20–26, 2012. P. 22–24)

[44] Dobrovolskii N. M., Dobrovolskii N. N., Yushina E. I., “O matrichnoi forme teoremy Galua o chisto periodicheskikh tsepnykh drobyakh”, Chebyshevskii sbornik, 13:3(43) (2012), 47–52 | Zbl

[45] Dobrovolskii N. M., Esayan A. R., Andreeva O. V., Zaitseva N. V., “Mnogomernaya teoretiko-chislovaya Fure interpolyatsiya”, Chebyshevskii sbornik, 5:1(9) (2004), 122–143 | MR | Zbl

[46] Dobrovolskii N. M., Esayan A. R., Pikhtilkov S. A., Rodionova O. V., Ustyan A. E., “Ob odnom algoritme poiska optimalnykh koeffitsientov”, Izvestiya TulGU. Ser. Matematika. Mekhanika. Informatika, 5:1 (1999), 51–71 | MR

[47] Dobrovolskii N. M., Esayan A. R., Pikhtilkov S. A., Stetsenko V. Ya., “Ob odnom vychislitelnom eksperimente”, Tekhnologiya, predprinimatelstvo, ekonomika, mezhvuz. sb. statei, v. 1, Tula, 1999, 81–90

[48] Dobrovolskii N. M., Esayan A. R., Rebrova I. Yu., “Ob odnom rekursivnom algoritme dlya reshetok”, Izvestiya TulGU. Ser. Matematika. Mekhanika. Informatika, 5:3 (1999), 38–51 | MR

[49] Dobrovolskii N. M., Esayan A. R., Shulyupov V. A., “O rekursivnykh algoritmakh vychisleniya faktoriala”, IX Mezhdunarodnaya konferentsiya ITO-99, sb. tr., v. II, Izd-vo MIFI, M., 1999, 425–426

[50] Dobrovolskii N. M., Esayan A. R., Shulyupov V. A., “Faktorial i rekursiya”, Izvestiya TulGU. Ser. Matematika. Mekhanika. Informatika, 5:1 (1999), 90–99

[51] Dobrovolskii N. M., Klepikova N. L., Tablitsa optimalnykh koeffitsientov dlya priblizhennogo vychisleniya kratnykh integralov, No 63, IOFAN SSSR, M., 1990

[52] Dobrovolskii N. M., Korobov N. M., “Optimalnye koeffitsienty dlya kombinirovannykh setok”, Chebyshevskii sbornik, 2 (2001), 41–53

[53] Dobrovolskii N. M., Manokhin E. V., “Banakhovy prostranstva periodicheskikh funktsii”, Izv. TulGU. Ser. Mekhanika. Matematika. Informatika, 4:3 (1998), 56–67 | MR | Zbl

[54] Dobrovolskii N. M., Manokhin E. V., Rebrova I. Yu., Akkuratova S. V., “O nekotorykh svoistvakh normirovannykh prostranstv i algebr setok”, Izvestiya TulGU. Ser. Matematika. Mekhanika. Informatika, 5:1 (1999), 100–113 | MR

[55] Dobrovolskii N. M., Rodionova O. V., “Kvadraturnye formuly s obobschennymi parallelepipedalnymi setkami”, Izv. TulGU. Ser. Mekhanika. Matematika. Informatika, 2:1 (1996), 71–77 | MR

[56] Dobrovolskii N. M., Roschenya A. L., “O nepreryvnosti giperbolicheskoi dzeta-funktsii reshetok”, Izv. Tul. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 2:1 (1996), 77–87 | MR

[57] Dobrovolskii N. N., “O chisle tselykh tochek v giperbolicheskom kreste pri znacheniyakh parametra $121$”, Izvestiya TulGU. Ser. Matematika. Mekhanika. Informatika, 9:1 (2003), 91–95 | MR

[58] Dobrovolskii N. N., “O trigonometricheskom polinome setki Smolyaka”, Sovremennye problemy matematiki, mekhaniki, informatiki, materialy mezhdunar. nauch. konf., Izd-vo TulGU, Tula, 2007, 36–36

[59] Dobrovolskii N. N., “Otklonenie dvumernykh setok Smolyaka”, Chebyshevskii sbornik, 8:1(21) (2007), 110–152 | MR | Zbl

[60] Dobrovolskii N. N., Kiseleva O. V., Simonov A. S., “Granichnye funktsii klassa dlya setok Smolyaka”, Izvestiya TulGU. Estestvennye nauki, 2011, no. 2, 11–29

[61] Dobrovolskii N. N., Rebrov E. D., “Kvadratichnoe otklonenie dvumernykh setok Smolyaka”, Sovremennye problemy matematiki, mekhaniki, informatiki, materialy mezhdunar. nauch. konf., Izd-vo TulGU, Tula, 2008, 51–52 | MR

[62] Nikitin A. N., Rusakova E. I., Parkhomenko E. I., Ivankina T. I., Dobrovolskii N. M., “O rekonstruktsii paleotektonicheskikh napryazhenii po dannym o pezoelektricheskikh teksturakh gornykh porod”, Izvestiya AN SSSR. Fizika Zemli, 1988, no. 9, 66–74 | MR