On heterogeneous linear forms
Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 56-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider hypergeometric functions with irrational parameters and their derivatives (including with respect to parameter). By means of specially chosen degree of zero polynomial more precise low estimates of the moduli of corresponding linear forms are obtained.
Keywords: Padé approximations of the second type, generalized hypergeometric functions, irrational parameters, differentiation with respect to parameter, low estimates of linear forms.
@article{CHEB_2013_14_3_a7,
     author = {P. L. Ivankov},
     title = {On heterogeneous linear forms},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {56--64},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a7/}
}
TY  - JOUR
AU  - P. L. Ivankov
TI  - On heterogeneous linear forms
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 56
EP  - 64
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a7/
LA  - ru
ID  - CHEB_2013_14_3_a7
ER  - 
%0 Journal Article
%A P. L. Ivankov
%T On heterogeneous linear forms
%J Čebyševskij sbornik
%D 2013
%P 56-64
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a7/
%G ru
%F CHEB_2013_14_3_a7
P. L. Ivankov. On heterogeneous linear forms. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 56-64. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a7/

[1] Galochkin A. I., “Ob arifmeticheskikh svoistvakh znachenii nekotorykh tselykh gipergeometricheskikh funktsii”, Sibirskii matematicheskii zhurnal, XVII:6 (1976), 1220–1235 | Zbl

[2] Galochkin A. I., “O nekotorom analoge metoda Zigelya”, Vestnik Moskovskogo universiteta. Ser. Matematika, mekhanika, 1986, no. 2, 30–34

[3] Ivankov P. L., “Utochnenie otsenok nekotorykh neodnorodnykh lineinykh form”, Matematicheskie zametki, 77:4 (2005), 515–521 | DOI | MR | Zbl

[4] Ivankov P. L., “Ob ispolzovanii sovmestnykh priblizhenii dlya izucheniya arifmeticheskoi prirody znachenii gipergeometricheskikh funktsii”, Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie, 2012, no. 12, 135–142 (data obrascheniya: 20.08.2013) http://technomag.edu.ru/doc/500464.html | MR

[5] Feldman N. I., Sedmaya problema Gilberta, Izd-vo Moskovskogo universiteta, M., 1982

[6] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987 | MR

[7] Chudnovsky D. V., Chudnovsky G. V., “Applications of Padé approximation to Diophantine inequalities in values of G-function”, Lect. Notes in Math., 1135, 1985, 9–51 | DOI | MR | Zbl