Squarefree numbers in the sequence $[\alpha n]$
Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 42-48
Cet article a éte moissonné depuis la source Math-Net.Ru
An asymptotic formula for the number of squarefree integers of the form $[\alpha n]$ is proved in the paper, where $\alpha$ is an algebraic number or a number with restricted partial quotients.
Keywords:
squarefree numbers, Beatty sequence, asymptotic formula, exponential sums.
@article{CHEB_2013_14_3_a4,
author = {D. V. Goryashin},
title = {Squarefree numbers in the sequence $[\alpha n]$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {42--48},
year = {2013},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a4/}
}
D. V. Goryashin. Squarefree numbers in the sequence $[\alpha n]$. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 42-48. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a4/
[1] Güloğlu A. M., Nevans C. W., “Sums of multiplicative functions over a Beatty sequence”, Bull. Austral. Math. Soc., 78 (2008), 327—334 | DOI | MR | Zbl
[2] Abercrombie A. G., Banks W. D., Shparlinski I. E., “Arithmetic functions on Beatty sequences”, Acta Arith., 136:1 (2009), 81—89 | DOI | MR | Zbl
[3] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, 3-e izd., pererab. i dop., Drofa, M., 2003