Certain conditions of the root-class residuality of generalized free products with a normal amalgamated subgroup
Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 134-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{K}$ be an arbitrary root class of groups. We prove a sufficient condition of the $\mathcal{K}$-residuality of the generalized free product of two $\mathcal{K}$-groups with a normal amalgamated subgroup.
Keywords: root classes of groups, residual properties, generalized free products.
@article{CHEB_2013_14_3_a16,
     author = {E. A. Tumanova},
     title = {Certain conditions of the root-class residuality of generalized free products with a normal amalgamated subgroup},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {134--141},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a16/}
}
TY  - JOUR
AU  - E. A. Tumanova
TI  - Certain conditions of the root-class residuality of generalized free products with a normal amalgamated subgroup
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 134
EP  - 141
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a16/
LA  - ru
ID  - CHEB_2013_14_3_a16
ER  - 
%0 Journal Article
%A E. A. Tumanova
%T Certain conditions of the root-class residuality of generalized free products with a normal amalgamated subgroup
%J Čebyševskij sbornik
%D 2013
%P 134-141
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a16/
%G ru
%F CHEB_2013_14_3_a16
E. A. Tumanova. Certain conditions of the root-class residuality of generalized free products with a normal amalgamated subgroup. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 134-141. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a16/

[1] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. Lond. Math. Soc., 7 (1957), 29–62 | DOI | MR | Zbl

[2] Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106 (1963), 193–209 | DOI | MR | Zbl

[3] Higman G., “Amalgams of $p$-groups”, J. Algebra, 1 (1963), 301–305 | DOI | MR

[4] Tumanova E. A., “Ob approksimiruemosti konechnymi gruppami obobschennykh svobodnykh proizvedenii grupp”, Chebyshevskii sbornik, 13:1 (2012), 150–152 | MR | Zbl

[5] Azarov D. N., Tedzho D., “Ob approksimiruemosti svobodnogo proizvedeniya grupp s ob'edinennoi podgruppoi kornevym klassom grupp”, Nauch. tr. Ivan. gos. un-ta. Matematika, 2002, no. 5, 6–10

[6] Karrass A., Solitar D., “The subgroups of a free product of two groups with an amalgamated subgroup”, Trans. Amer. Math. Soc., 150 (1970), 227–255 | DOI | MR | Zbl