Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2013_14_3_a16, author = {E. A. Tumanova}, title = {Certain conditions of the root-class residuality of generalized free products with a normal amalgamated subgroup}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {134--141}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a16/} }
TY - JOUR AU - E. A. Tumanova TI - Certain conditions of the root-class residuality of generalized free products with a normal amalgamated subgroup JO - Čebyševskij sbornik PY - 2013 SP - 134 EP - 141 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a16/ LA - ru ID - CHEB_2013_14_3_a16 ER -
E. A. Tumanova. Certain conditions of the root-class residuality of generalized free products with a normal amalgamated subgroup. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 134-141. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a16/
[1] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. Lond. Math. Soc., 7 (1957), 29–62 | DOI | MR | Zbl
[2] Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106 (1963), 193–209 | DOI | MR | Zbl
[3] Higman G., “Amalgams of $p$-groups”, J. Algebra, 1 (1963), 301–305 | DOI | MR
[4] Tumanova E. A., “Ob approksimiruemosti konechnymi gruppami obobschennykh svobodnykh proizvedenii grupp”, Chebyshevskii sbornik, 13:1 (2012), 150–152 | MR | Zbl
[5] Azarov D. N., Tedzho D., “Ob approksimiruemosti svobodnogo proizvedeniya grupp s ob'edinennoi podgruppoi kornevym klassom grupp”, Nauch. tr. Ivan. gos. un-ta. Matematika, 2002, no. 5, 6–10
[6] Karrass A., Solitar D., “The subgroups of a free product of two groups with an amalgamated subgroup”, Trans. Amer. Math. Soc., 150 (1970), 227–255 | DOI | MR | Zbl