On the residual property of polycyclic groups
Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 121-126
Cet article a éte moissonné depuis la source Math-Net.Ru
We generalize the result of A. L. Shmelkin which establishes the fact that polycyclic groups are virtually residually $p$-finite for any prime $p$.
Mots-clés :
polycyclic group
Keywords: residually a finite $p$-group, virtually residually a finite $p$-group.
Keywords: residually a finite $p$-group, virtually residually a finite $p$-group.
@article{CHEB_2013_14_3_a14,
author = {A. V. Rozov},
title = {On the residual property of polycyclic groups},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {121--126},
year = {2013},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a14/}
}
A. V. Rozov. On the residual property of polycyclic groups. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 121-126. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a14/
[1] Hirsh K. A., “On infinite soluble groups”, J. London Math. Soc., 27 (1952), 81–85 | DOI | MR
[2] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. London Math. Soc., 7 (1957), 29–62 | DOI | MR | Zbl
[3] Azarov D. N., Moldavanskii D. I., “Approksimiruemost sverkhrazreshimykh grupp konechnymi $p$-gruppami”, Nauch. trudy IvGU. Matematika, 1999, no. 2, 8–9 | MR
[4] Shmelkin A. L., “Politsiklicheskie gruppy”, Sib. mat. zhurn., 9 (1968), 234–235 | MR
[5] Plotkin B. I., Gruppy avtomorfizmov algebraicheskikh sistem, Nauka, M., 1966 | MR | Zbl
[6] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR | Zbl
[7] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1977 | MR | Zbl