On the residual property of polycyclic groups
Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 121-126

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the result of A. L. Shmelkin which establishes the fact that polycyclic groups are virtually residually $p$-finite for any prime $p$.
Keywords: polycyclic group, residually a finite $p$-group, virtually residually a finite $p$-group.
@article{CHEB_2013_14_3_a14,
     author = {A. V. Rozov},
     title = {On the residual property of polycyclic groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {121--126},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a14/}
}
TY  - JOUR
AU  - A. V. Rozov
TI  - On the residual property of polycyclic groups
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 121
EP  - 126
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a14/
LA  - ru
ID  - CHEB_2013_14_3_a14
ER  - 
%0 Journal Article
%A A. V. Rozov
%T On the residual property of polycyclic groups
%J Čebyševskij sbornik
%D 2013
%P 121-126
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a14/
%G ru
%F CHEB_2013_14_3_a14
A. V. Rozov. On the residual property of polycyclic groups. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 121-126. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a14/