On the finitely separability of subgroups of generalized free products
Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 81-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that all finitely generated subgroups of generalized free product of two groups are finitely separable provided that free factors have this property and amalgamated subgroups are normal in corresponding factors and satisfy the maximum condition for subgroups.
Keywords: generalized free products of groups, finitely separable subgroup.
@article{CHEB_2013_14_3_a10,
     author = {D. I. Moldavanskii and A. A. Uskova},
     title = {On the finitely separability of subgroups of generalized free products},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {81--87},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a10/}
}
TY  - JOUR
AU  - D. I. Moldavanskii
AU  - A. A. Uskova
TI  - On the finitely separability of subgroups of generalized free products
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 81
EP  - 87
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a10/
LA  - ru
ID  - CHEB_2013_14_3_a10
ER  - 
%0 Journal Article
%A D. I. Moldavanskii
%A A. A. Uskova
%T On the finitely separability of subgroups of generalized free products
%J Čebyševskij sbornik
%D 2013
%P 81-87
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a10/
%G ru
%F CHEB_2013_14_3_a10
D. I. Moldavanskii; A. A. Uskova. On the finitely separability of subgroups of generalized free products. Čebyševskij sbornik, Tome 14 (2013) no. 3, pp. 81-87. http://geodesic.mathdoc.fr/item/CHEB_2013_14_3_a10/

[1] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uchen. Zap. Ivanovsk. ped. in-ta, 18 (1958), 49–60

[2] Baumslag G., Solitar D., “Some two-generator one-relator non-Hopfian groups”, Bull. Amer. Math. Soc., 68 (1962), 199–201 | DOI | MR | Zbl

[3] Hall M., “Coset representations in free groups”, Trans. Amer. Math. Soc., 67 (1949), 421–432 | DOI | MR | Zbl

[4] Romanovskii N. S., “O finitnoi approksimiruemosti svobodnykh proizvedenii otnositelno vkhozhdeniya”, Izvestiya AN SSSR. Ser. Mat., 33:6 (1969), 1324–1329 | MR | Zbl

[5] Allenby R., Gregorac R., “On locally extended residually finite groups”, Lecture Notes Math., 319 (1973), 9–17 | DOI | MR | Zbl

[6] Rips E., “An example of a non-LERF group which is a free product of LERF groups with an amalgamated cyclic subgroup”, Israel J. of math., 70:1 (1990), 104–110 | DOI | MR | Zbl

[7] Allenby R., Doniz D., “A free product of finitely generated nilpotent groups amalgamating a cycle that is not subgroup separable”, Proc. Amer. Math. Soc., 124:4 (1996), 1003–1005 | DOI | MR | Zbl

[8] Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106:2 (1963), 193–209 | DOI | MR | Zbl

[9] Allenby R., Tang C., “Subgroup separability of generalized free products of free-by-finite groups”, Canad. Math. Bull., 36:4 (1993), 385–389 | DOI | MR | Zbl

[10] Meskin S., “Nonresidually finite one-relator groups”, Trans. Amer. Math. Soc., 164 (1972), 105–114 | DOI | MR | Zbl

[11] Moldavanskii D. I., Timofeeva L. V., “Konechno porozhdennye podgruppy gruppy, opredelyaemoi odnim sootnosheniem i obladayuschei netrivialnym tsentrom, finitno otdelimy”, Izvestiya VUZov. Matematika, 1987, no. 12, 58–59