The mean value for Weyl sum over the ring of algebraic integers
Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 113-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

The estimates of the mean value trigonometrical Weyl sum in a rational number field are given in the paper [1] of Arkhipov G. I. The estimates of the mean value trigonometrical sum in real algebraic numbers is found in the present article.
Keywords: the mean value theorem, trigonometrical sums.
@article{CHEB_2013_14_2_a8,
     author = {A. V. Kokorev},
     title = {The mean value for {Weyl} sum over the ring of algebraic integers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {113--117},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a8/}
}
TY  - JOUR
AU  - A. V. Kokorev
TI  - The mean value for Weyl sum over the ring of algebraic integers
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 113
EP  - 117
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a8/
LA  - ru
ID  - CHEB_2013_14_2_a8
ER  - 
%0 Journal Article
%A A. V. Kokorev
%T The mean value for Weyl sum over the ring of algebraic integers
%J Čebyševskij sbornik
%D 2013
%P 113-117
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a8/
%G ru
%F CHEB_2013_14_2_a8
A. V. Kokorev. The mean value for Weyl sum over the ring of algebraic integers. Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 113-117. http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a8/

[1] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987

[2] Kokorev A. V., “Teorema o srednem znachenii trigonometricheskikh summ v pole algebraicheskikh chisel 2 stepeni”, Uchenye zapiski Orlovskogo gos. un-ta, 2012, no. 3(47), 29–38