Spherical sums in the sphere problem
Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 33-49

Voir la notice de l'article provenant de la source Math-Net.Ru

Here is given an analytical expression for the error term of the asymptotic formula for the number of lattice points in the sphere using a spherical trigonometric sum, that is triple sum over lattice points lying on the sphere of variable radius. Conclusion based on a threefold application of the one-dimensional Poisson summation formula with the error term. The estimation of the error term is held in an explicit form.
Keywords: Sphere problem, spherical sums, exponential sums.
@article{CHEB_2013_14_2_a3,
     author = {L. G. Arkhipova},
     title = {Spherical sums in the sphere problem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {33--49},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a3/}
}
TY  - JOUR
AU  - L. G. Arkhipova
TI  - Spherical sums in the sphere problem
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 33
EP  - 49
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a3/
LA  - ru
ID  - CHEB_2013_14_2_a3
ER  - 
%0 Journal Article
%A L. G. Arkhipova
%T Spherical sums in the sphere problem
%J Čebyševskij sbornik
%D 2013
%P 33-49
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a3/
%G ru
%F CHEB_2013_14_2_a3
L. G. Arkhipova. Spherical sums in the sphere problem. Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 33-49. http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a3/