Spherical sums in the sphere problem
Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 33-49
Cet article a éte moissonné depuis la source Math-Net.Ru
Here is given an analytical expression for the error term of the asymptotic formula for the number of lattice points in the sphere using a spherical trigonometric sum, that is triple sum over lattice points lying on the sphere of variable radius. Conclusion based on a threefold application of the one-dimensional Poisson summation formula with the error term. The estimation of the error term is held in an explicit form.
Keywords:
Sphere problem, spherical sums, exponential sums.
@article{CHEB_2013_14_2_a3,
author = {L. G. Arkhipova},
title = {Spherical sums in the sphere problem},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {33--49},
year = {2013},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a3/}
}
L. G. Arkhipova. Spherical sums in the sphere problem. Čebyševskij sbornik, Tome 14 (2013) no. 2, pp. 33-49. http://geodesic.mathdoc.fr/item/CHEB_2013_14_2_a3/
[1] Chamizo F., Iwaniec H., “On the Sphere Problem”, Rev. Mat. Iberoamericana, 11:2 (1995), 417–429 | DOI | MR | Zbl
[2] Heath-Brown D. R., “Lattice points in the sphere”, Number theory in progress, Pr. Int. conference (Zacopane, Poland, 30.06–09.07, 1997), v. 2, Elem. And anal. numb. Theory, de Gruyter, Berlin, 1999, 883—892 | MR | Zbl
[3] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, Drofa, M., 2004
[4] Vinogradov I. M., Osobye varianty metoda trigonometricheskikh summ, Nauka, M., 1976