Representations of positive integers in DBNS
Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 86-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

With V. Ch. Salihov’s estimates of linear forms in $\ln2$ and $\ln3$ we improve the asymptotic estimate of number of terms in DBNS.
@article{CHEB_2013_14_1_a8,
     author = {V. G. Chirskii and R. F. Shakirov},
     title = {Representations of positive integers in {DBNS}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {86--93},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a8/}
}
TY  - JOUR
AU  - V. G. Chirskii
AU  - R. F. Shakirov
TI  - Representations of positive integers in DBNS
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 86
EP  - 93
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a8/
LA  - ru
ID  - CHEB_2013_14_1_a8
ER  - 
%0 Journal Article
%A V. G. Chirskii
%A R. F. Shakirov
%T Representations of positive integers in DBNS
%J Čebyševskij sbornik
%D 2013
%P 86-93
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a8/
%G ru
%F CHEB_2013_14_1_a8
V. G. Chirskii; R. F. Shakirov. Representations of positive integers in DBNS. Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 86-93. http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a8/

[1] Dimitrov V. S., Jullien G. A., Miller W. C., “An Algorithm for Modular Exponentiation”, Inform. Process. Lett., 66:3 (1998), 155–159 | DOI | MR | Zbl

[2] Tijdeman R., “On the maximal distance between integers composed of small primes”, Composito mathematica, 28:2 (1974), 129–162 | MR

[3] Salikhov V. Kh., “O mere irratsionalnosti $\log 3$”, Doklady Akademii Nauk, 417:6 (2007), 753–755 | Zbl