On matrix decomposition of one reduced cubic irrational
Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 34-55
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work we considered the matrix decomposition of the cubic irrational $\alpha$ satisfying the equation $$x^3 - 4x^2 - 5x - 1 = 0.$$ For decomposition of the matrix
$$
\left(
\begin{array}{c}
\alpha \\
1 \\
\end{array}
\right)=\prod_{k=0}^\infty\left(
\begin{array}{cc}
310941\cdot k+155427 156744\cdot k+78333 \\
61578\cdot k+30882 31041\cdot k+15564\\
\end{array}
\right)
$$
an algorithm of transition to regular continued fraction is constructed.
Bibliography: 2 titles.
Keywords:
continued fraction, matrix decomposition, reduced cubic irrational, algorithm of transition from matrix decomposition to continued fraction.
@article{CHEB_2013_14_1_a3,
author = {N. M. Dobrovol'skii and D. K. Sobolev and V. N. Soboleva},
title = {On matrix decomposition of one reduced cubic irrational},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {34--55},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a3/}
}
TY - JOUR AU - N. M. Dobrovol'skii AU - D. K. Sobolev AU - V. N. Soboleva TI - On matrix decomposition of one reduced cubic irrational JO - Čebyševskij sbornik PY - 2013 SP - 34 EP - 55 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a3/ LA - ru ID - CHEB_2013_14_1_a3 ER -
N. M. Dobrovol'skii; D. K. Sobolev; V. N. Soboleva. On matrix decomposition of one reduced cubic irrational. Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 34-55. http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a3/