Multidimensional generalization of sums of fraction parts and their applications to number theory
Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 104-118

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a new multidimensional generalization of fraction part function is introduced. We obtain a formula which express the number of points from the orbit of irrational shift on multidimensional torus, lying in a given domain, in the terms of sums of multidimensional fraction parts. Also we give some application of this formula to various number-theoretic problems.
@article{CHEB_2013_14_1_a10,
     author = {A. V. Shutov},
     title = {Multidimensional generalization of sums of fraction parts and their applications to number theory},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {104--118},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a10/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - Multidimensional generalization of sums of fraction parts and their applications to number theory
JO  - Čebyševskij sbornik
PY  - 2013
SP  - 104
EP  - 118
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a10/
LA  - ru
ID  - CHEB_2013_14_1_a10
ER  - 
%0 Journal Article
%A A. V. Shutov
%T Multidimensional generalization of sums of fraction parts and their applications to number theory
%J Čebyševskij sbornik
%D 2013
%P 104-118
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a10/
%G ru
%F CHEB_2013_14_1_a10
A. V. Shutov. Multidimensional generalization of sums of fraction parts and their applications to number theory. Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 104-118. http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a10/