Multidimensional generalization of sums of fraction parts and their applications to number theory
Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 104-118
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper a new multidimensional generalization of fraction part function is introduced. We obtain a formula which express the number of points from the orbit of irrational shift on multidimensional torus, lying in a given domain, in the terms of sums of multidimensional fraction parts. Also we give some application of this formula to various number-theoretic problems.
@article{CHEB_2013_14_1_a10,
author = {A. V. Shutov},
title = {Multidimensional generalization of sums of fraction parts and their applications to number theory},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {104--118},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a10/}
}
TY - JOUR AU - A. V. Shutov TI - Multidimensional generalization of sums of fraction parts and their applications to number theory JO - Čebyševskij sbornik PY - 2013 SP - 104 EP - 118 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a10/ LA - ru ID - CHEB_2013_14_1_a10 ER -
A. V. Shutov. Multidimensional generalization of sums of fraction parts and their applications to number theory. Čebyševskij sbornik, Tome 14 (2013) no. 1, pp. 104-118. http://geodesic.mathdoc.fr/item/CHEB_2013_14_1_a10/