The corner boundary layer in nonlinear singularly perturbed parabolic equations
Čebyševskij sbornik, Tome 13 (2012) no. 3, pp. 28-46
Voir la notice de l'article provenant de la source Math-Net.Ru
The Dirichlet problem is considered for the nonlinear parabolic equation in a rectangle. The existence of the solution and its asymptotic expansion is proved.
@article{CHEB_2012_13_3_a1,
author = {I. V. Denisov and T. J. Denisova and A. V. Rodionov},
title = {The corner boundary layer in nonlinear singularly perturbed parabolic equations},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {28--46},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a1/}
}
TY - JOUR AU - I. V. Denisov AU - T. J. Denisova AU - A. V. Rodionov TI - The corner boundary layer in nonlinear singularly perturbed parabolic equations JO - Čebyševskij sbornik PY - 2012 SP - 28 EP - 46 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a1/ LA - ru ID - CHEB_2012_13_3_a1 ER -
I. V. Denisov; T. J. Denisova; A. V. Rodionov. The corner boundary layer in nonlinear singularly perturbed parabolic equations. Čebyševskij sbornik, Tome 13 (2012) no. 3, pp. 28-46. http://geodesic.mathdoc.fr/item/CHEB_2012_13_3_a1/