Number-theoretic algorithms of interpolation
Čebyševskij sbornik, Tome 13 (2012) no. 2, pp. 117-123
Cet article a éte moissonné depuis la source Math-Net.Ru
In calculus mathematics an essential role interpolation of functions, i.e. construction on the given function plays another (as a rule, more simple) which values coincide with values of the given function in some number of points. Interpolation has both practical, and theoretical value. In practice often there is a task about restitution of a continuous function on its tabular values for example received during some experiment.
@article{CHEB_2012_13_2_a14,
author = {A. V. Oderov},
title = {Number-theoretic algorithms of interpolation},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {117--123},
year = {2012},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a14/}
}
A. V. Oderov. Number-theoretic algorithms of interpolation. Čebyševskij sbornik, Tome 13 (2012) no. 2, pp. 117-123. http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a14/
[1] Dobrovolskii N. M., Manokhin E. V., “Banakhovy prostranstva periodicheskikh funktsii”, Izvestiya Tulskogo gosudarstvennogo universiteta. Seriya Matematika. Mekhanika. Informatika, 4:3 (1998), 56–67 | MR
[2] Dobrovolskii N. M., Esayan A. R., Andreeva O. V., Zaitseva N. V., “Mnogomernaya teoretiko-chislovaya fure interpolyatsiya”, Chebyshevskii sbornik, 5:1 (2004), 122–143 | MR
[3] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004 | MR