On zeros of some analytic functions related to the Hurwitz zeta-function
Čebyševskij sbornik, Tome 13 (2012) no. 2, pp. 86-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\zeta(s,\alpha)$ denote the Hurwitz zeta-function. We prove that, for some classes of functions $F$, the function $F(\zeta(s,\alpha))$ has infinitely many zeros in the critical strip.
@article{CHEB_2012_13_2_a11,
     author = {A. Laurin\v{c}ikas and D. \v{S}iau\v{c}iunas},
     title = {On zeros of some analytic functions related to the {Hurwitz} zeta-function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {86--90},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a11/}
}
TY  - JOUR
AU  - A. Laurinčikas
AU  - D. Šiaučiunas
TI  - On zeros of some analytic functions related to the Hurwitz zeta-function
JO  - Čebyševskij sbornik
PY  - 2012
SP  - 86
EP  - 90
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a11/
LA  - en
ID  - CHEB_2012_13_2_a11
ER  - 
%0 Journal Article
%A A. Laurinčikas
%A D. Šiaučiunas
%T On zeros of some analytic functions related to the Hurwitz zeta-function
%J Čebyševskij sbornik
%D 2012
%P 86-90
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a11/
%G en
%F CHEB_2012_13_2_a11
A. Laurinčikas; D. Šiaučiunas. On zeros of some analytic functions related to the Hurwitz zeta-function. Čebyševskij sbornik, Tome 13 (2012) no. 2, pp. 86-90. http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a11/

[1] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981

[2] Cassels J. W. S., “Footnote to a note of Davenport and Heilbronn”, J. London Math. Soc., 36 (1961), 177–189 | DOI | MR

[3] Davenport H., Heilbronn H., “On the zeros of certain Dirichlet series I”, J. London Math. Soc., 11 (1936), 181–185 | DOI | MR

[4] Gonek S. M., Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979 | MR

[5] Laurinčikas A., “On the universality of the Hurwitz zeta-function”, Intern. J. Number Theory, 2013 (to appear)

[6] Laurinčikas A., Garunkštis R., The Lerch zeta-function, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl

[7] Mergelyan S. N., “Uniform approximations to functions of complex variable”, Usp. Mat. Nauk, 1952, no. 7, 31–122 (Russian) | MR | Zbl

[8] Voronin S. M., “Theorem on the “universality” of the Riemann zeta-function”, Izv. Akad. Nauk SSSR, Ser. matem., 39 (1975), 475–486 (Russian) | MR | Zbl

[9] Voronin S. M., Analytic properties of Dirichlet generating functions of arithmetic objects, Dissertation for the degree of Doctor of Phys-math Sciences, V. A. Steklov Mathematics Institute, M., 1977 (Russian)

[10] S. M. Voronin, Selected Works: Mathematics, ed. A. A. Karatsuba, Publishing House MGTU im. N. E. Baumana, M., 2006 (Russian)